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KEY

KAY'S ALGEERA, PART FIRST.

IE7" The numbers in parentheses, as seen in the margin of this Key,

refer to the corresponding number of example, under the same article iu

the Algebra.

INTELLECTUAL EXERCISES.

To Teachers. As these exercises, except, perhaps, a few in Lesson XIV,

can be readily solved without the aid of Algebra, by pupils having a good

knowledge of Mental Arithmetic, it is unnecessary to occupy space with their

solution.

Some instructors who use the Algebra, pay no attention to the intellectual

exercises, but permit their pupils to begin with the preliminary definitions

and principles. This course is proper with pupils of considerable maturity

of mind, and who possess a good knowledge of arithmetic ; but in the case of

learners generally, and especially those who are young, the intellectual

exercises should be thoroughly studied.

Lesson 14.

(33) Let x= the 1st, then g= the 2d, and g+2a;= (he 3d.

Then, a;+|+|+2x=44,

2x
adding, ^^+"3 =44,

11a;

-^=44,

X
3=4,

ie=ia.

the numbers are 12, 4, and 28.



KEY TO PART FIRST.

X
(34) Let c= the distance from A -.o B; then ^= (list, from fl

tH C; and ar-f-r dist. from A to C
2^

Whence, 2x-\--r= dist. from C to D;

and, a;-|--+2a;4-g-=72,

3x
or. 3ic+-g-=72,

18a;
-^=72,
o '

5=4,

a;=20, the distance from A to jB.

a;

r=4, the distance from i? to C.

2a;

2x-l-"r=48, the distance from C to D.

rsS) Lot a:=the number.

Then, x+|-|-j+26=5x,

3a;

or, a;+Y4-26=5a;,

7x 20a;

13a:
26=—,

a;

2=4'

(36) Let x=len(Tth of the body, then g-r6= length of tail

Then, as=|-f6+6.

a;

-=12
' 2

a;=24, the length of the body
;

2+6=18, the length of the tail

;

and, 6+24+18=48, the lengtli of the whole fish.



MULTIPI, TnATTOnj

(37) Let x= his age.

then, a;+-4-g+28=3a;,

or, a;+-g4-28=3a;,

11a; 18a;

7a;

28=-^,

a;

4:=^, and a;=24, his age

ADDITION AND SUBTRACTION.
Remark. Pupils sometimes experience difficulty from not attending

to tlie definition of similar quantities ; for e.\ample, by regarding sucii

terms as %L^h and 3a62 as similar. By attending to tliis point, and beijig

careful to write sirnilar terms under each other, no difficulty need b^.

experienced in solving all the questions, in either addition or subtraction

MULTIPLICATION.
Remarks. In algebraic multiplication, there are a few things which,

although they affect no principle, are of sufficient importance to claim

the pupil's attention.

1st. In multiplying two monomials together, it is customary to write

the sign first, then the numeral coefficient, and then the letters of the

product from the left toward the right. Thus, in finding the product

of —2a2 by -|-3ac, we first write the sign of the product — , then 6,

then o', and then c, making the whole —&a^c. This is more convenient

thau writing the letters in the reverse order, because it corresponds to

the manner of writing words.

2d. In multiplying by a polynomial, it is customary to multiply, /5rat

by the left term of the multiplier, next by the second term from the left,

and so on. Although the result would evidently be the same if the

operation were performed in a reverse order, yet this method is now so

well established, that a different one would be regarded as unscholarly.

When a pupil understands addition of idgebraio quantities, ami how
to multiply one monomial by another, he can encounter no real difiiculty

ill performing any of the operations in multiplication. It is not, tlisrs-

fore, deemed necessary to Insert the work of any of the exair.ples.
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DIVISION,
Remarks. For reasons similar to tliose given under mu liplicatjon, il

is customary, in dividing one monomial by another, to write, iirst tlie s.gn

of the quotient, then the numeral coeiBcient, if any, and then the literal

part from left to right.

lu dividing one polynomial by another, in order to conform to the

general method of proceeding from the left toward the right, it is cus-

tomary to divide the first term of the dividend by the first term of thfa

divisor ; this, however, affects no principle, as the division may be com
menced at the right hand, by dividing the last term of the dividend b)

the last term of the divisor.

The divisor may be written either on the left or the right of the divi-

dend ; the latter is the French method, and is more convenient, because

the quotient being written beneath, the quantities to be multiplied

together before making each subtraction, are the most conveniently

situated with regard to each other.

We here present the operation of a few of the more difficult pjKimples,

with which, and similar ones, pupils sometimes find difficulty.

Article 79.

Note. The terms in examples 12 and 17, require lu uo arrange '

which, the operations present no difficulty.

(14)

6a^x—laV Ans.

6a^x—9a-x--|-3ax'

(15)



F A T O R I iV a

.

(24) 3(fi~3xY+ZxY—y' \x^—3x^y+3m/^—y^

-\-3x^y~6xY+ x'y' +3a;y

+3xY—Sxy+S^Y

_(_a;3y3_3j,y_j.3^5_^«

FACTORING.
Kemakks, In solving the examples in factoring at the blackboard, the

pupil should always explain why the given quantity can be separated

Into factors. Thus, ia^ri—9bh/e=(2ax2-[-3bjf){2ax''—3by'), because it

is the difference of the squares of two monomials, 2aar^ and 3by^. Again,

x^-^-l can be separated into two factors, because it is the sum of the odd

powers of two quantities x and 1, (Art. 94. 5th) ; and one of the factors

is x-[-l.

It is shown in Art. 215, that the direct method of resolving a qaadratic

trinomial into its factors, is to place it equal to zero, and then find the

roots of the equation ;
yet as the indirect method explained in Art. 95,

presents no difficulty to an intelligent pupil, and is much shorter than

the direct method, it should always be taught. Let it be kept distinctly

before the mind of the pupil, that the whole difficulty consists in finding

two numbers whose sum is equal to the coefficient of the second term,

and whose product is equal to the third term. Thus, in example 1,

" What two numbers are those whose sum is 5, and product 6 ? " Any
Intelligent pupil will soon discover that 2 and 3 are the numbers required.

We here present the solution of the examples in

Article 95.

(2) a2+7a-f-12=(a+3)(a+4) ; because +3+4=7, and

3X4=12.
(3> x^—5x+6=(x—2){x—3) ; because —2 and —3=—5,

and—2X—3=+6.
(4) a;2

—

9x-\-20=(x—i){x—5) ; because —4 and —5=—9,

and—4X—5=+20.
(5) x^+x—6={x-{-3){x—2); because —2+3=+l, and

—2X3=—6.

(6) x'—X—6=(x—3)(j;+2) ; because —3+2= - 1, and

—3X2=—6.
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(7) a;'-t-x-2=(a;+2)(a;—1); because +2—1=+1, anrf

—1X2=—2.

(8) i2—I3x+40=(a;—5)(a^—8); because —5 and—8=— 13,

and—5X—8=40.

(9) x^—1x—8={x—8)(x-{-l); because —84-1=—7, and

—8X1=—8.

(10) a;'+7a:—18=(a;—8)(a;—2) ; because —2+9=+7, and

—2X9=— 18.

(U) a:'-^—30=(.i;— 6)(a;-l-5) ; because —6+5=— 1, and

—6X5=-3U.

(12) 3x^+12x—16=3{!c''+4x—6)=3(x+5)(x—l.)

(13) aV—9a^x-\-Ua^=a\x^—9x-{-U)=aX:t^^)ix—2).

(14) 2abx^—lialx—60ah=2ab(x^—'7x—30)=2ah(x—10X3:+3).

(15) 2x^—4x''—30x=2xix^—2x—16')=2xix—5)(x+3).

Article 96.

Note. In performing the operations on the slate or black-board, a line

fuould be drawn across each canceled factor. We have not the means,

s.icept in the case of figures, of representing this by type. Thus, in

' *].tample 4, following, a line should be drawn across each of the c's, anr)

•jIso across (a—b) in the numerator and denominator

.o^
(^-3)(^^-l ) {x~3){x+l)(x-l)

(2) J=l
=

(^=1) =(a^3)(x+l)

—X-—2a;—3.

,„ (^'+1)(^'-1) i'J+l){z-l )(,z+l)
C3) -^^1)—= ^ =(^3+l)(^_l^

=2"—2^+2— 1.

ea^c—12aic-t-6&=c ^c(a—Zi)(a—t)
^^-^^ 2^^=267 =~^(^^)~=^'^"~*)-

(eax-\-9ay){ix^—iy '') 3g(2j:4-3j/)(23:-f3y)(3j—3y)
^^^ 4x^+\2xy-\-9y^' ~ {2x-{-3i/X2x-f3y)

=3a(2a^-3y).

(j'—5j+ 6)(a^—7.r4- 12) (x—2)(ix—3){x—3){x—i)
(^) a;2_Gx+9

"
(x—3)(x--3)~'

=(a;—2)(.r—4V



GREAT LST COMMON DIVISOR.

GREATEST COMMON DIVISOR.

Note. All the examples for exorcise, Art. 11)6, may be solved by

merely separating the quantities into tlieir factors, by tlie rules for fac-

toring; Arts. 94 ; 95. But as the application of the direct rule for finding

the great*:«t common divisor of two polynomials, is generally regarded

by pupils as a difficult operation, we here present the solutions of all flia

examples.

Article 106.

(5) 5a''--\-5ax^5a{a-\-x)

By omitting the factor 5a, (see Note 2), and dividing a'

—

x^ by

the other factor a-\-x, we find there is no remainder ; tliere-

fore a-\-x is the
ff.

c. d.

(6) a:'—a'.r=x(x2—0=)

a'

—

a^x (x

a'x—a^

a\x—a)

x^—a'
\
X—a g. c. d.

x^—ax {x-\-a

ax—a'

ax—a^

After dividing we find the first

remainder contains a factor a''

not contained in x^

—

a^, hence it

is not a factor of the greatest

common divisor, and should be

omitted. See Note 3.

(7] a:'

—

c'^x=x{x'^—c^)

x^-^-icx-^-c-
I

a;'—

2ca;+2c'

2c(a;-|-c)

(1

I

ir+o g. c. d.

x'^-\-cx ( X—

c

—ex—c'

—CX—c^

(8) a;2+5x+6

j;^+2j—3

3x+9

3(x+3")

a;2+2x—

3

a;2-l-3x

[xy-2x—

3

—X—

3

—X—

3
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(9) 6a^+llax-\-3x^ ]^6a^-1ax—3x^

ea^+lax—Sx^ (. 1

4ox+6x' ; by factoring this wc got

2a;(2a+3x)

Ga^-\-lax—3x=
|
2a-\-Sx

By completing this division, we find there is no remainder

hence, 2a-l-3x is the greatest common divisor.

(10) a<—x"
I

n'+a'x—ax=—x5_
a^-\-a^x—a^x-—ax' ( a—x

—(z'x-|-«'x'-j-ax-'—x''

—a'x

—

a^x^-\-ax^-{-x''

2a^x-—2x'; then by factoring

2xHa^—x^)
a^-\-a-x—ax-—.r^

| a-—x'

By completing the division, we find there is no remainder ,

hence, a^—x^ is the greatest common divisor.

(11) a'—a'x+Sax-'—3x'
\
a^—5ax-\-ix'

o'

—

5a^x-\-4ax- ( a-j-4x

-|-4a^x

—

ax^—3x^

4a^x—

2

0gx°+ 16x3

-\-19ax''—19x' ; by factoring this we get

19x2(a—x)
By dividing a'—5ax-|-4x= by a—x, we find there is no remain-

der ; hence, a—x is the greatest common divisor.

(12) a^x^—aY=a\x''—y'>) : x'-\-xY=xKx^+f)-

By the principle of Note 3, neither of the factors a' or x', can
form factors of the greatest common divisor ; then by dividing

x^—y* by x--\-y^, we find there is no remainder ; hence, the latter

quantity is the required greatest common divisor.

(13:



ALGEliKAIC FRACTIONS, 1)

LEAST COMMON MULTIPLE.
Nora. The pupil should be reminded, lliat the operation of finding

the least common multiple in algebra, involves precisely the same priii

ciples as in arithmetic.

Ans.

a—X
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Case 1. To reduce a fraction to its lowest terms.

Article 128.

32'—24Z+9 3(z^—8z+3) 3

^^^^ 423—322+12'=4(23—8«+3)~4' ^'^

5a^-\-5aoc 5a{a-\-x) 5a
CIS)

^2_a.2 =(a+a;)(a—^""o—
»•

(16) -^_i -(^i)(„_i)-m+l- ^'"-

a;'—ary' x(x^—y^) x

rc,m
^^-y' (^+y)(^^) ^+y ^

*''"-' a;2—2ay+2/'^(^—y)(^—y)"~^—
y'

a;'—oj;' a;'(a;—a) x'

(^^) x^—2ax-\-a^^(x—a){x—a)"^'^^ ' '*"'•

2a;'—6a: 2a;(a:—3) 2a;

(22) ;r5;z:^6=(a;+2)(a;—"sj"^^+2 '
^"*"

x^+2x—[ 5 Ca:+5)(a:—

3

) a—

3

^^'^ a;2+8x+i5^(a;+5)(a;+3)~a;+3' ^'*^"

Article 129.

a;3y'+a:'y3 xy(xhj+xy^) xy

^ -^ ax^y-\-axy- a(x-y-\-xy^) a'

4a-\-ih 4(a+t) 2

(8) 2a=—2?;^=2(a+?))(a—i)=^^IIj- ^"^•

jjS 2r,2 jj2^jj 2) m^
(9) ^2—4»T4~(ra—2)(?i—a')^^;!^- '^"•'•

nixi
^
^^+2^-3 (x+3)(a;— 1) x—l

*•'"-' x=^+5a;+5-(x+3Xa'4 2)-a;4-2' ^"*'
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MULTIPLICATION AND DIVISION OF FRACTIONS.

Remark. The only difficulty in solving any of tho examples in eithel

multiplication or division of fractions, consists in reducing the resulting

fraction to its lowest terms. The difficulty may be avoided, generally, by

first indicating the operations to be performed, then factoring, and then

canceling the factors common to both .terms. We here present the

solution of a few of the examples, both in multiplication and division

Article 1 40>

X a?—x' a x(a-\-x')(a—x)a a

a-\-x x^ a—X {a-\-x')x'^(a—x) x'

,,„, a^H-y'^—y= a {x-^+y-'){x^-y){x-y)a
(12) l^y^l^jX\= ix-y)i.x-^)

=aW+y-).A

ex c' c^ c^—x' ^^^-{-xYc—x) c'CcA-x)
06') cA- = X =-^

—

— -=--——-

^ ' '^c—X c—x' c—3! x-\-l (c—a;)(a;-|-l) a;-|-l

Article 141.

~2b+ikr
^"*'

a;'

—

y^ x^—y'^ 1 [jic-\-y'){x—i/) avf-j

^2^> ^3^~ =-(^ ~^'^=~Yar ^x^—xy ""'
A^{ii^^^^~3i^

Article 142.

a—b. a^—V _a.—h o^+aai+i^

(a-i)(a-f;,)(a+t)

2x2 J. 2x2 a-\-x 2x2(a-|-a;)

* ' /v3_J_T'3 * flA—V /»3_t Tr.3'^ Va3_|_j.3 • a-|-x a'-|-x^ a; {a-\-x){a?—flx-fx').!"

_ 2x

a'—ox-j-.x-'
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Article 144.

EESOLUTION OF FRACTIONS INTO SERIES.

(2) 1 \l+x
l-\-x (1

—

x-\-x' &.C.

X

—X—x^

+x'

4) l+x
I

1

—

X

1—x ~
{l-\-2x-\-2x^+&c.

+2.r

-if-2x—2x^

+2x^

-]--2x^—2x^

+2x^

(3)

(6)
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lerm of the Jiuinerator. (See Art. 132). For illustration, take example

.0, Art. 155.

a:-\--i X—

3

X—

1

Multiplying both sides by 12, to remove the denominators.

4(x+2)—3(a;—3)=12x—24—6(x— 1),

or, 4a;-[-8—3x+9=12x—24—6j;+6,
by transposing, 4r—3a;

—

12x-\-Gx=—24-)-6—8—9
;

by reducing, —5x=—35

;

x=T.

QUESTIONS PRODUCING EQUATIONS OF THE
FIKST DEGREE.

Article 156.

(16) Let a;=A's share, then 2j:=T3's,

and x4-2a:=42.

Whence x=14.

(17) Let x= the first part, then 2x^ the second, and 3x=tne
third, and x-|-2x-j-3x=48

;

from which x=:8.

(18) Let x:=the first part, then 3x= the second, and 3xX2
=6x= the third part.

Therefore, x+3x4-6x=60

;

from which x=6.

(19) Let x= the number of each,

then Ix or x= cost of the apples,

2x= " " lemons,

and 5x= " " oranges.

Therefore, x+2x+5x=56

;

from which x=:7.

(20) Let x= cost of an apple, then 2x cost of a lemon.

5x= cost of all the apples, and 3X2x= cost of all the

lemons.

Therefore, 6x+6x=22 ;

from which x=2.

(21) Letx^ C's age, then 2x= B's age, and 4.x= A's age.

Therefore, x+2x-|-4x=98
;

from which x=14.
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1,22) Lee x= A's cents, then 3x= If's, x-\-—=1x= C's, and

%x-\-^x=hx= D's.

Therefore, a;+3x+2ar+5x=44

;

from which x=4.

(23) Let x= age of youngest, then 2a;== common difference

of their ages, and 3x= age of second, 5a;= age of third,

and 1x=i age of fourth.

Therefore, x-|-3a;-|-5x+7x=48
;

from which a;=3.

(25) Let bx and Ix represent the numbers, since 6a; is to 7*

as 5 to 7.

Then 6a;+7a^=60 ;

from which j;=5.

Hence, 5a;=25, and 7a:=35.

(26) Let 2a;, 3x, and ox represent the parts ; then

2x+3a:4-5a;=60 ;

.from which a;=6.

Hence, 2x=12, 3j:=18, and 5x=30.

(27) Let 3a;, 5x, 7a;, and 8a; represent the parts ; then

3a;-f5a;+7a:+8a'=92 ;

from wliich x=\.
Hence, 3x=12, 5x^20, 7a;^28, and 8x=32.

(28) Let 2a;, 'ix, and 5a; represent the parts ; these will evi-

dently fulfill the second condition, since i of the first, \

of the second, and \ of the third, are each equal to :r

Then 2a;+3a;+5x=60 :

from which x=6.
Hence, 2a;^12, 3a;=18, and 5a;=30.

(29) Let x= the number.

Then 1+1+^=65 ;

from which x=fiO.

Or, let 12x= the number; then

fia;-|-4x+3a;=66
;

from which a;=5 ; and 12x==60,

To avoid fractions, we choose 12x, because it is a multi-

ple of 2, 3, and 4.
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; 30) Let a;= the number.

X X
Then 5-;^=4 ;

from which x=10.
By putting 35a; for the number, we may avcid tractions.

(31) Let x= A'a age, then ^x= B's.

Therefore, x-{-—^^=1&

;

5x 14x 19x

by clearing of fractions, 19a;=76X5,
by dividing by 19, x=4X5=20, A's age.

2x 3x
(32) Let x= A's part, then ~= B's, and -=-=C'b.

2x 3x
Therefore, a;+y+Y=88 ;

from which a;=42.

3x 3 3x 9x
(33) Let x= C's share, then —-=:B's, and ^ of —-:=—= A's.

9x 3x

20~'"T"

from which a;=200.

Therefore, —+—+a;=440 ;
' 20 ' 4 '

(34) Let 3x= distance from A to B, then 5x= distance from

B to C;
3x 6x

also, —-}-5a;=6x, and --=2a;= distance from C to D.
o o

Therefore, 3x-\-5x-\-2x=\2Q ;

from which a;=12.

Hence, 3x=36, and Sa;^=60.

(35) Let 3x= capital

3x
Then 3x——=2a;= capital at close of 1st year;

2 ix 14ar

2x-l-r of 2a;=2a7-|--r-=-r-== cap. close 2nd year

;

14x 1 14a; 14a; 2a; 12x

-fi 7 °f "^-=-7—T=^'= cap- 3d year.

12a;

from which 3a;=1545.

Therefore, -^-=1236
;
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(36) Let a;= rent last year.

5x
Then x+Y^g=l68 ;

from which as=]60.

(37) Let 1= the less part, then x-{-6= the greater.

Therefore, x+a;-)-6=32 ;

from which x=13.

(38) Let x= votes of unsuccessful candidate,

Then x-\-50= votes of successful candidate.

Therefore, a;+a;+50=256

;

from which a;=103.

(39) Let x= A's,

then a;+100=B's,

and a;4-100+270=x+370= C's.

Therefore, x+a;+100+a;+370=l520 ;

from which a;=350.

(40) Let x=: number of women,

then x-\-i= " men,

and 2x-l-44-10=2a;-l-14= number of children.

Therefore, a;+a:4-44-2a;-l-14=90 ;

from which a;=18.

(41) Let 1= number of yards cut oif,

then X—9= number of yards remaining.

Therefore, x-\-x—9=45 ;

from which 1=27.

(42) Let x= the number.

Then 7x—20=20—a;

;

from which x^b.

(43) Let^=each daughter's share, then 2x^ each son's snaie,

3x^ what all the daughters will receive ;

'

ix= " both the sons will receive
;

then 7i—500= what the widow will receive.

Therefore, 3x+4x+7j.'—500=6500
;

from which a;^500.

(44) Let x= the number of days,

then 20a:= distance 1st travels,

and 30a::= " 2nd travels.

Therefore, 20x+30x=400 ;

from which x=8.
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(45) Let »;:=: the number of hours.

Then Sx-j-SO^ miles B travels,

and bx= miles A travels.

Therefore, 5a:=3x-|-30.

from which x=\5.

(46) Let x=: the number.

Then 1+1-44=^-6;

from which a;=60.

(47) Let x= time past noon.

Then 12

—

x time to midnight.

X X 2x 12

—

X
Therefore, ^+2+3+y=^6~~ '

clearing of fractions and reducing, we find 731=60
j

5
whence a=s hr. =50 min.

o

(48) Let x= one part, then 120—x= the other.

120—a; 3
Therefore, —-— =1 J or ^ ;

from which x=48.

(49) Let x= the number.
7X-P3

Then -^—4=16;
from which, x=5.

(5b) Let x= tlie number.
5j^24

Then —g—+13=a;

from which x=54.

(51) Let 3x== A's capital, then 2x=:B'b.

Then 3x—100= A's after losing $100;

2x4-100= B's after gaining $100.

5
Therofore, 2x+100—^(3x—100)=134 ;

from which x=262.

Hence, 3x=786, and 2x=524.

(52) Let x= his money.

/ 2x \ X
Then X— (y+3j=g+7;
from which x==75.
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(53) Let 5x= annual income of each.

Then x= what A saves, and 4x= what he spends yearly i

also, 4a;-|-25= what B spends yearly ;

and 5x—(_4x-\-2b)=x—25= what B saves yearlv

Therefore, 5(a;—25)=200 ;

from which a:=65.

Hence, 5x:=325.

(54) Let x= the number of pounds.

2x
Then ---flO= lbs. of nitre

;

2x
5^+1= lbs. of sulphur

;

r—17=:lbs. of charcoal
;

Therefore, —+io+^+l+-—17=*;.

2x X
By omitting y+o on the right, and its equivalent x on

the left, and reducing,

2x
we find ——6=0

;

whence 2x=6X23, and 1=3X23=69.

(55) Let x= cost of harness, then 3x=cost of horse ;

, 32j;
,

32a;

4xX2f=-g-, therefore —-—19= cost of chaise.

Z2x
Hence, a;+3a;+—-—19=245

;

44.r
transposing and reducing, —~=264

;

whence 44x=264X3,
and a;=6x3=18.

(56) Let Zx and ix represent the number.

Then 3i+4 : ix-\-i : 5 ; 6,

whence 6(3a;4-4)=5(4x4-4)
;

from which x=2. Hence, 3a:=6, and 4x=8.

(67) Let 2x and hx represent the numbers.
Then 2a;—2 : 5x—2 : : 3 : 8,

whence 8(2x—2)=3(5x—2) ;

from which a-^lO.

Hence, 2r=20, and 5as=50.
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(58) Let x= the number of years.

Then 25+a; : 30+a; : : 8 : 9 ;

whence 9(25+a;)=8(30-|-x) ;

whence, by reducing, x=15.
Again, let x= the number of years, since their ages

were as 1 to 2.

Then 25—x : 30—a; : : 1 : 2 ;

whence 2(25—a;)=30—it,

and, by reducing, x=20.

(69) Let x= the number of hours.

Then, since the first fills the cistern in IJ hours, it fills

1 3x—=1 of it in 1 hour, and in x hours it will fill — part

of it.

In like manner, the second pipe fills —=^j of the cis-

3x
tern in 1 hour, and in x hours it will fill — part of it.

Also, the third pipe fills
i-
in 1 hour, and in x hours will

X
fill r part of it.

Sx 3x X
Therefore, 'T-\-T7)-\-fr=^> or the whole of the cistern ;

(60) Let x= the number of days.

Then, since the first does it in seven days, he does If of

X
it in 1 day, and in x days, ^•

X
In like manner, the second does ^ in 1 day, and in x days, ^

X
The third does ^ in 1 day, and in x days r.

Therefore, 7+c+q=^) or the whole

;

from which x=2 f J.

(61) Let 3x= money,
3x

3x—Y=2a;-

Then 2j;+50—^(2a:+50)+37=I00 ;

firom which a;==10.

Hence, 3a;=30.
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(62) Let 5x=: yearly salary

;

5x—f of 6x=3x ;

3x—I of 3a;=2a;.

2x
Then 2x—-r=i20 ;

from which x='15, and 5a;^375.

(63) Let a;= value of suit of clothes.

Then 80-l-a;= yearly wages ;

80-f-x
_

/ 80-j-a;

and —TV,- = monthly wages.

/ 80+a; \

Therefore, 7 I ~- I =a;+35,

from v/hich a;=28.

(64) Let x= days it will last the woman.

Then, -= part the woman can drink in 1 day
;

since both can drink it in 6 days, they can drink J o' it

in 1 day
;

since the man can drink it in 10 days, he can diink jij

of it in 1 day.

1

Therefore, i—j'^=^ ;

from which a;=15.

(65) Let x= the distance in miles.

X
Then tt= hours in going from C to L ;

X
and rn= " "i going from L to C.

Therefore, -^+^=25 ;

from which a;=150.

(66) Let x= what B lost ; then 2a;= what A lost.

240—2a;

Therefore, — =96—j;

;

from wh'^na;=48.

(67) Let x= the whole number of gallons.

X
Then r-j-SS^ gallons of wine ;
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X
and -—5= gallons of water.

X X
Therefore, a;=--l-25-|-r—5.

Whence x=\10, and -+25=85= gallons of wine ;

and -z—5=35= gallons of water.

(C8J Let a:= less part, then 91—a;= the greater part,

and 91

—

2x= the difference of the parts.

91—

X

Therefore,
§YZ.2x='^ '

from which a;=42.

(69) By representing the four parts by x—2, a;+2, {x, and 2jC|

we at once fulfill the last four conditions.

Therefore, a;—2+a;+2-f^a;+2a;=72 ;

by adding, 4^x^72,
whence oc=\Q.

Then x—2=14 ; a;-|-2=18
;
\x=S ; and 2a;=3a.

(70) Let x^ length of each piece.

Then 3(a;—19)-}-a;—17=142
;

from which x=54.

(71) Let x^ the number of sheep.

X
Then —= acres ploughed ;

X
and -= acres of pasture.

Therefore, —+-=161
;

from which x=46,0.

(72) Let x= greater part, then 34

—

x= less part,

18—(84—a;)=a^l6;
Therefore, a;—18 : a;—16 : : 2 : 3.

Whence 3(a;—18)=2(a;—16) ;

from which a;==22.

(73) Let x= the number of beggars.

Then 3a;—8=: his money ;

also, 2a^+3= his money ;

Therefore, 3a;—8=2a:+3

;

from which a;=ll.
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(74) To avoid fractions, let 16j;= the number of apples.

Sx—8= number distributed to the first

;

8x+8= number left

;

4x-(-4r—8= number " " " second;

4a;-|-12= number left

;

2x4-6—8= number " " " third;

2x-\-lA= number left

;

a;_[-7—8= number " " " fourth;

a;-j-l5= number left.

Therefore, a;+15=20 ;

from which x=5, and 16x=80.

The question may be solved in the same manner by let-

ting x= the number of apples.

(,75) Let x= number of days, in which B alone could reap it.

1 6
Then -^ part B could reap in 1 day, and -^= the part

X X

he could reap in 6 days.

Since A can reap it in 20 days, he can reap ^^ in 1 day,

and in 16 days, ^^.

6
Therefore, ^§-|--=l, the whole ;

from_ which a;=30.

(76) Let |x and fx represent the numbers.

Then ^+6 : fx+o : : | : i-

Whence Ki^+6)=f(|^+5) ;

from which x=60 ; hence, ^x=30, and |a;=40.

(77) Let x=: price of a bushel of barley.

4X+90
Then —r—=: price of a bushel of oats

;

4x-j-9o
therefore, x-\-3 : —5— : : 8 : 5.

Whence 5(x4-3)=8
(
^^±^

) ;

from which as=45.

(78) Let 2x== distance from A to B,

then 3x= distance from C to D ;

2x 3x
-^-\--^=2x:=3 times the distance from B to C ;
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therefore, y= distance from B to C.

Hence, 2.r-|--5-+3^=34
;

from which x=6 ; hence, 2x=12 ; 3i=18 ; and -^=4.

(79) Let x= the lbs. of rice,

x+5
then —^z=^ the weight of the flour, since | of | is J,

2x-\-l5
and — r-—= the weight of the flour

;

' 3x4-15 \ a;-|-a
1 „ I — u.. -<

the water.
/ 3X+15 \ x+3,

i [

—
2
—+^ /

="2~= weight of

3a;+15 a;+3
Therefore, x+^—4—^= 15

;

from which x=2.

Article 161.

fcwlfSTIONS PRODUCING EQUATIONS CONTAINING
TWO UNKNOWN QUANTITIES.

\o) Lot x= the price of a lb. of coffee, and y=the price of

a lb. of sugar.

Then 5a;+3^=79, (I),

and 3r+5y=73, (2) ;

from which .r=:l 1, and y=8.

»<S) Let x= the price of a horse, and y:= the price of a cow.

Then 9x4-7i/=3U0, (1),

and 6a;+13!/=300, (2) ;

from which j;^24, and ^=12.

(7; Let a;= the price of a dozen of port, and j/=llie prica

of a dozen of sherry.

Then 20a:+30//=120, (1),

and 30.r-i-25^=140, (2) ;

from which x=S, and y=2.

'8) Let X and y represent the numbers.

Then ix+iy=22, (1),

and ix+iy=l2, (2) ;

from which a;=24, and y=:30.

3
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(9) Let X represent the greater, and y the less of the two

numbers.

Then a;+Jy=37, (1),

and y—ix=20, (2)

;

from which x^28, and y=27.

(10) Let x= tne first, and y= the second of the two number

Then jx—^?/=5, (1),

and ix—iy=2, (2) ;

from which :c=20, and !/=15.

(11) Let x= value of first horse, and yi= value of second.

Then j;+25=2y, (]),

and y-\-26=3x, (2) ;

from which x=lo, and y=20.

(12) Let ar=: A's property, and y=B's.
Then a;+50=j/—20, (ij,

and 3j;+5y=2350, (2) ;

from which x=250, and y=S20.

(13) Let x^ gallons 1st holds, and y= gallons 2d holds,

2x 'iy

Then -+96=^, (1),

and -f=Y' (2) J

from which a;=720, and y=512.

(14) Let x:= digit in ten's place, and y= digit in unit's place.

Then 10x-|-j'= the number, and 10!/-}-a:=numberinverted,

Wx+y
therefore, r^=7, (1),

x-\-y ^ '

, lOy+o;
-d^^5=3,(2);

from which a;=8, and y=i.

n5) Let a;=the numerator, and y=the denominator of the
fraction.

Then ^=2. (1),

^nd ^=^' (2) ;

from which a;=6, and !/=7.

(16) Let a:= A's age, and //= B's.

Then a;+y+18=2i, (1),

and X— 1/—6=1/, (2) ;

from which x=ZO, and 2/=ia.
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(I f) Let x= the greater, and y= the less of the two numbers.

Tlien a;-fy=37, (1),

4x—3v
and—g-^=6, (3)

;

from which x=2l, and y=16.

(,18) Let a;= the numerator, and y= the denominator ot tli*

fraction.

Then~^=i, (1),

and ^-5=i. (2) ;

from which a;=7, and y=19.

f 10) Let x= sum given to A, and y^ sum given to B.

3i
Then x—^x=~= A's capital at close of the year,

by
and y-(-iy^^=B's capital at close of the year.

Then a;+j'=2400, (1),

3a: by
and-=-^, (2);

from which a;=1500, and !/=900.

(20) Let x^the less, and !/=the greater of the two numbers

Theny—l=4x, (1),

and a;+3=^y, (2) ;

from which a:=8, and !/=33.

(21) Let a;= A's, and y= B's.

Then a;+100=!/— 100, (1),

and 2(x—100)=j/+]00, (2) ;

from which a;=500, and B=700.

(22) Let x= the greater, and y= the less of the t'vo numbers

Then 5a;+7y= 198, (1),

and f+f=6. (2)

;

from which a;^20, and y=li.

(23) Let x=: A's age, and !/=B's.

Then x—7 and y—7, represent their ages 7 years ago ;

and x-\-l and y-\-1, represent their ages 7 years hence.

Therefore, x—7=3(j/—7), (1),

and a7+7=2(j/+7), (2) ;

from which a;=:49, and ^=^21.
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(24) Let x= digit in ten's place, and y= digit in unit's place

Then lOx-\-t/= the number,

and IO^+a;=the number inverted.

Therefore,—~^=4, (l;,
x+y

and l0x+y+2^=lQy+x, (2) ;

from which x^3, and y=S.

^36) Let 1= value of a lb. of the first, and j/:^ value of 8 lb

of the second

Then j;+?/=20, (1),

and 3a;+5i/=ll(3+5)=88, (2);

from which x^6, and !/^14.

(26) Let x=: the number of lemons, and y^ the number of

oranges.

Then 3x+5i/=84, (1) ;

since by selling ^ of the lemons and ^ of the oranges

for 40 cents he cleared 8 cents
;

3x 5(/

therefore, -+-|^40—8=32, (2);

from which x=8, and y=\2.

(27) Let x= number of peaches and ?/= number of apples.

X yThen -= cost of the peaches, and ;= cost of the apples ;

therefore, --|-|=30, (1),

X X
^ of -=-:= cost of ^ the peacliRE ;

V y

therefore, |+-|^=]3, (2);

from which xi=72, and y=60.

(28) Let x= A's money, and y= B's.

Thus x-\-\y=bm, (1),

and y-\-{x=&m, (2) ;

from which 1=400, and !/=500.

(29) Let x= number of yards in first piece, and i/= uumbei
of yards in 2d.
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Then 4,r+7y=236, (1),

and |(4:i:)+f(7y)=If-;o+8,

or -^4-Y
= 16S, (2) ;

from which x^24, anJ j/==20.

(30) I/Ct x= the father's, and 'y= the son's age.

Then .r—6=3j(!/—6), (1),

anda:+3=2(l(!/-f-3), (2);

from which a;=36, and ?/=15.

(31) Let revalue of the first horse, and )/= value of the

second.

Then a,--l-50=y-)-2+8, (1) ;

a;-(-2^ value of first horse Avith worst saddle,

y+50= " " second " " best "

therefore, !/+50 : x-\-'i : : 15 : 4,

whence, 4(!/+50)=15(a;+2), (2) ;

from which x=ZO, and y^70.

(,32) Let a;:= number of bushels of oats, and y^ number of

bushels of rye.

Then, by the 1st condition, a;+6 : y-\-% : : 7 : 6,

whence 6(x+6)=7(!/+6), (1).

By the 2d condition, x—6 : y—6 : : G : 5,

whence 5(x—6)=6(!/—6), (2);

from which x^lS, and i/^66.

(33) Let x= the length, and y= the breadth.

Then by the 1st condition, x-\-i : v-\-i : : 5 : 4,

whence 4(x-|-4):=,5(!/-|-4), (1).

By the 2d condition, x—4 : y—4 •
: 4 3,

whence 3(a;—4)=4(j/—4), (2) ;

fi'om which a;=36, and (/=28.

(34) Let x^^ number of acres of tillable, and 3/= number 0*

acres of pasture.

Then 200a;4-140!/=24500, (1),

Also, X : X— (/ : : 14 : 9,

whence 9x=14x

—

\\y, (2);

from which a:=98, and y=35.

Note. In forming equation (1), it is important for the pupil to O'^tica

(hat tlio qiiantilies on botli sides must be expressed iii the same denomi-

nation, whicli, in tliis case, is cents.
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(35) Let x= number of A's sheep, and y= number of B's.

Then, by the 1st condition, x+lO : y—20 : : 4 : 3,

whence 3(a:+10)=4(!/—20), (1).

Agaiii x+10—20=j;—10^ number in A's flock it end

of 2d year,

and y—20-1-10=^—10= number in B's flock at end of

2d year.

Then X— 10 : y—10 : : 6 : 7,

whence 7(x—10)=6(!/—10), (2) ;

from which a;=70, and !/=80.

(36) Let x= number of gallons in first, and y^ number 'n

second.

By tlie 1st condition, a:—15=|(y— 15), (1),

aldo, .;— 15—25==j;—40, and y—15—a5=y—40
;

tlieioluri', by the 2d condition, x—40:=^(!/—40), (2) ;

from which x=65, and y==90.

(37) Let x= the numerator, and !/= the denominator.

ar-t-l

Then -^=i, (1),

and ^=1, (2);

from which x=3, andy=:13.

(3S) Representing the first two numbers by hx and 7a;, and

the other two by 3y and hy.

By tlie 1st condition we have 5a:-4-3)/ : 1x-\-hy : : 9 : 13,

whence 13(5a;+37/)=9(7x+5!/), (1) ;

tlie difference of their sums =(7x-|-5y)—(5x-(-3i/)=2x

therolbre 2j+2v=16, (2) ;

from which x=6, and i/^2
;

hence 5x=30, 7a;=42 ; 3y=6, and 5y=10.

(39) Let a;= number of bushels of rye, and y= number ot

busliels of wlieat.

Then 2S+i--fi/=100, (1).

And 28X28+36,!;+48y=100X40=4000, (2) ;

from which .r=20, and y=52.

(40) Since 4x and 5x have the same ratio as 4 and 5, let them
represent the weights of the loaded wamns. Also, let 6u
and 7//, which have tlic same ratio as 6 and 7, represent

the parts of the loads taken out.
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Then 4x—6v : hx—7y : : 2 : 3,

whence 3(4j;—6i/)=2(5x—7y), (1),

and 4a;—6;(/-|-5a;—7//=10, (2);

from which a;=4, and y=2 ;

hence 4a;=il6, and 5a;=20.

f41) Let a:= number of gallons in first, and 3/= number of

gallons in second.

First. Second.

X y

y y

X—y 2j/^ gals, in each after first pouring
,

2x

—

iij 3t/—x= gals, in each after 2d pouring.

3j/

—

X Sy—X

Sx—5y Gy—2x= gals, in each after 3d pouring.

Therefore, 3x—5y=6?/—2.r, (I),

and 3x—5y^l6, (2) ;

from which x^22, and y=10.

This question may be easily solved bv arithmetic, by reversing

the operations, thus :

First. Second.

16 16= gals, in each after 3d pouring;

24
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QUESTIONS PRODUCING EQUATIONS OONTAINIHS
THREE OR MORE UNKNOWN QUANTITIES.

Article 163.

(2) Let X, y, and 2 represent the numbers.

Then x-\-y=^l, (1),

x+2=32, (2),

and 3/+2==35, (3) ;

from which a;=12, y=15, and z=:20.

(3) Let X, y, and z represent the numbers.

Then x+?/+z=59, (1),

X—

u

^-^=5, (2),

X—

2

--=9, (3)

;

from which a;^29, ?/=19, and 2=11.

We have assumed that the. first number is greater than the

second or third ; but a correct result will be as readily obtained

by supposing the third number greater than the first or second.

(4) Let X, y, and 2 represent the numbers.

Then ^-1-^7/= 14, (1),

y+isz=\s, (2),

and z+J[-a;=20, (3) ;

from which x^8, j/=12, and 2^18.

(5) Let x,y, and 2 represent the prices respectively ot the

three watches.

Then a;4-™^=25, (1),

2/+-]^-=26, (2),

and 2+~^=29, (3) ;

from which ar^8, y=\i, and c=16.

(6) Let X, y, and z represent the three numbers.

Then a;-l-^=25, (1),

x-\-z

y+-^=25, (2),
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and 2-1-^=25, (3) ;

from which a;=13, y^=n, and z=l9.

(7) Let v-= cost cif an apple, x= cost of a pear, y= cost of a

peacli, and z= cosV of an orange.

Then 2u+5.r=12, (1),

3x-f4y=18, (2),

4x-|-5c=28, (3),

and 6;/4-62=39, (4) ;

from which t)=], a;^2, y=3, and t=4.

(8) Let a;= A's money, y= B's, and 2= C's.

Then a;+y=|z, (1),

y-|-r=6a;, (2),

^+^=!/+680, (3) ;

from which a:=200, 2/=360, and 2=840.

(9) Let x= A's money, 1/-= B's, and 2^ C's.

Thenx-[-!/+2=I820, (1),

a;+200—y—200+160,(2),
and ii/+70=;—70, (3) ;

from which a:=400, y=640, and 2=780.

CIO) Let x^ A's money, y^B's, and z= C's.

Then a;+700=2()/—700), (1),

y+1400=3(2— 1400), (2),

and 2+420=5(a;—420), (3) ;

from which a'=980, y=1540, and 2=2380.

(n) Letx,y, and 2, represent the digits in hundred's, ten's, and

unit's places respectively.

Then 100x-|-IOj/-|-2 represents the number.

Therefore x-l[-i/-\-z=l], (1),

z=2x, (2),

and 100j;+10y-|-2+297=1002+10y+a;, (3) ;

from which x=3, 3/=2, and 2=6.

(12) Let .r= A's money, y= B's, and 2= C's.

Then a;+ji+2=2000, (1),

y-|-200=2+100, (2),

y~100=^2, (3),

from which a;=500, y=700, and 2=800.
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(J 3) Let X, y, and z represent the numbers.

Then xj-y+z=83, (1),

x—7 : y—l : : 5 : 3

whence 3(x—7)=5(y— 7), (2),

2/—3 : z—3 : : 11 : 9

whence 9(y—3)=n(z—3), (3) ;

from which a;=37, y=25, and z=21.

("14) Let a;= A's share, 2/=B's, and z= C's.

Then x+2/+2=180, (1),

2x+80=3;/4-40, (2),

and 2x+80=42+20, (3) ;

from which x=10, y=60, and 2=50.

(15) Let X, y, and z represent the numbers.

Then x+y+z=18, (1) ;

ix : iy : : I : 2,

whence |a=:|?/, (2) ;

iy : iz : 2 : 3,

whence iy:=^z, (3),

from which x=9, i/=24, and 2^45.

(16) Let a;= A's share, y= B's, and j= C's.

Theno;—4(2/+2)=30, (1),

y—|(^+z)=30, (2),

and 2—|(x+j/)=30, (3) ;

from which x:=150, y=lW, and 2^90.

(17) Let a,', y, and z, represent the days respectively, in which

A, B and C each, alone, can perform the work.

Then since A can do it in x days, he can do - part in 1

1
. ^1

day. In like manner B can do - part of it, and C, - part

of it in 1 day. Also, since A and B can perform the

work in 12 days, they can perform y'j- of it in 1 one da)'.

For a like reason A and C can perform j'j, and B aud C
jij in 1 day.

1 1 1
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.

3f>

By subtracting Eq. (2) from (i) we have

1 I_
Z 2=^i'i— r'5=6^(i) (4) ;

by adding equations (4) and (3) together

2

or y=30, by clearing of fractions.

By subtracting equation (4) from (3)

2

2= z'ff—6'ff=3'iT' (6).

or 2=60, by clearing of fractions.

The value of x may be found by substituting the value of y m
fiq. (1), or by subtracting Eq. (3) from (2), and adding the result,

ing equation and Eq. (1) together.

Note. For another method of finding the values of the unknown
ouantities after the equations are formed, see Art. 169, Example 1st.

(18) Let ic= digit in hundred's place, y= digit in ten's place,

and z= digit in unit's place.

Then 100.j;+10!/+z= the number,

lOOx-i-lQy-i-z
also j—^-,-^—=19, (1),

x-\-y-\-z-\-9 ^ "

x4-z
y=^' (2).

and 100x+10!/-|-z+198=1002-|-10y+a;, (3) ,

from wV ich x=:4, !/=5, and 2=6.

(19) Let a;= bushels of barley, y^ bushels of rye, and
2= bushels of wheat.

Then x+y-\-z=100, (1),

28a;+36!/+482=4000, (2),

28a;+36X2y+4S(24-10)==40(100-f-y+10),
by reducing, 28j;+32s/-i-482=3920, (3) ;

from which a;=28, y=20, and 2^62.

(20) Let X, y, and 2 represent the birds respectively which A,

B, and C killed.

X y
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Tlierefore a;-|-y-t-2=96, (1),

4x—4y—42=32, (2),

6y—2a;—22=32, (3) ;

from which x=52, y=28, and 2=16
By reversing the operation, as in the solution of example 41

page 31, this qutstion is easily solved by arithmetic thus :

at close of 3d division ;

at close of 2d division ;

at close of 1st division ;

previous to the 1st division.

Since each had an equal number after the third division, there-

fore, each must have had J, of 96, which is 32. And since, in

making the third division C gave to A and B as many as they had,

it is evident that before the third division, that is, after the second

division, A and B must each have had ^ of 32, which is 16, and C
32, and what A and B received at the third division, making in all

64. By reasoning in a similar manner we find what each had

previous to the other divisions.

A
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factoring, (m-\-7i)x=zna,

dividing, x=:—i—

;

''' m-\-n

'

ma-\-na na ma
m-\-n m-\-n m-\-n

{¥) Let a;= one part, then a—x will be the other.

Then mx-\-n{a—x)^b .

trms. and fact'ng, (m

—

n)x=b—na,

b—na
dividing, x-. m—n

ma—710 b—na ma—b
a—x=

—n m- -ra m—n
(.4) Let x=: the number.

X X
Then -+-=a,m ' n

nx-\-mx=mna, by clearing of fractions,

mna
whence x=

'm-\-n'

(5) Let jr=the first part; then ma;= the second; and nx=
the third part.

Therefore, x-]-mx-\-nx=a,

factoring, il-\-m-\-n)x=a,

a
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.

(7) Let xz= the number.

Tlien a-\-x : b-\-x : : m : n,

whence n{a-\-x)=m{b-\-x) ;

transposing, nx—mx^mh—na,

Ml—na

n—m

(8) Let a?= the number.

Then a—x : h—x : : m : n,

whence n{a—x)=m{b—x).

transposing, mx—nx=mb—na,

mb—na na—mb
x= , or . £.fleAtt. 133m—n n—m

(9) Let x= the number.

Tlien a-\-x b—x : : m : n,

whence n(a-{-x)^=m(b—x),

transposing, mx-\-nx=rab—na,

'Itch—na

m-\-n

(10) Let 1:= the number of dollars he had at first.

1 1

Then x——x—-a;=a,m n

mnx—nx—mx=mna, by clearing of fractions ;

{mn—m—n)x=mna,
mna

mn—m—n

(11) Let a;^ the quantity.

m p
Then —x— - a:=a,

n q

mqx—npx=anq, by clearing of fractions
;

anq

mq—np

(12) Le' x= the number of persons.

Then ax= the number of cents paid

;

also (x—b)c= the number of cents paid ;

therefore, {x—b)c=ax

;

ex—ax=bc,

_hc_
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(13) Let a:= the number of persons.

Then ax-\-b= the number of cents the person had
,

also cx-\-d= the number of cents the perso.ti had
;

Therefore ax-\-h=cx-\-d ;

(a—c)x=d—b, by transposing ;

d—b
x= .

(14) Let a;=the number of bushels of oats, then n—a:=tn»

number of busliels of rye.

Then ax= cost of x bushels at a cents per bushel

;

(ra

—

x)b= cost of n—x bushels at b cents per bushel;

therefore ax-\-(n—x)b=nc,

(a

—

b)x=nc—nh^n(c—b)

,

n{c—J)

''=~ci:—b~'

n{a—i) n(c—b) n{a—c)

a—h a—h a—b

(15) Let x= the money he had in his purse.

a;-(-a:=:2a;,then2j;—a= money he had after 1st

spending
;

2x—a-\-(2x—a)—a^4x—3a= money after 2d spnd'g
;

4x—3a-|-(4x—3a)

—

a=8x—1a= money after 3d spnd'g
;

Sx—7a-l-(8x—7a)—a=16x—15a= money after 4th "

Therefore I6.1—I5a=0,

16.r=I5a,

x={la.

(16) Let x=: number of pieces of 1st kind, then c

—

x= num-
ber of pieces of .second kind.

Since o pieces of the first kind make 1 dollar, or 100 cts.

100 ^ , ,

therefore = value in cents of a piece of the first kind.
a

'^

100
In like manner -j—= value in cents of a piece of *h9

second.

100
x= value in cents of x pieces of first kind.

—T-(f—j;)= value in cents of (c

—

x) pieces of the second

kind.
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100 100
Therefore x'+-r-(c—x)=100 ;

-_|--^—:=1, by dividing both sidea

by 100;

bx-\-ac—ax=ah, by clearing of fractions.

(J

—

a)x=za(_h—c) ;

x=—, .

I)
—a

c(b—a) a{b—c) i(c

—

a)

i—

a

b—a b—a

To illustrate this question by numbers, take the rollowing :

How many 5 and 25 cent pieces must be taken, so that 8 shall

make a dollar !

Arts. 5 five cent pieces, and 3 twenty-five cent pieces.

Article 171.

(11) Let x= the less number ; then x-\-2= the greater.

Therefore x{£+-2)=x^+8,

whence x=4, and j;-|-2=6.

(12) Let x^the greater part, then a—x:= the less.

Therefore x'—(a

—

xy=c
a^-\-c a^—r.

whence x=—z— , and a—x^-
2a ' 2a '

(13) Let x=: number of pages, and y=: number of lines on a

page ; then xy^ number of lines in the book.

Therefore ('a;+5)(j/+10)=X2/+450, (1),

and (x—10)(y—5)=.'n/—450, (2) ;

from which we find x=20, and ^^40.

Article 172.

KEGATIVE SOLUTIOHS.

Enunciation of questions 2, 3, 4, and 5, so that the results

will be true in an arithmetical sense.

What number must be added to 20, that the sum may be 25 !

Ans. 5.
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3. What number must be subtracted from 11, tbat the remain-

der being multiplied by 5, the product shall be 40 !

A?is. 3

4. What number is that, of which the | is less than the the J

by 3? Ans. 36.

6 A father, whose age is 46 years, has a son \ged 15 ; hmo

many years sirice, was the son ^ as old as his father ]

Ans. '-).

RADICALS OP THE SECOND DEGREE.

Note. All the e.xamples in the formation of powers, and extraction

OF the square root, being performed by direct, straightforward metliods

of operation, can present but few difficulties, if any, to the careful stu-

dent. In the examples Art. 196, before commencing the operation the

pupil must be careful to arrange the terms of the polynomial with refer-

ence to a certain letter.

Article 199.

KEDUCTION OF RADICALS OF THE SECOND
DEGREE.

(1) 78a2=^4ffl=X2=V4o=Xs/2=2aV2.

(2) J12a'=Jia^XSa-—^4a^Xjia=2aj3o,.

(3) ^16a'b=J16a^X a.b= ^l6a^Xja6=4aJ ah.

(4) V ISa"J3c3= J9a^b^c^x 2bc=J9a'bVX-J^bc

=3a-bcj2bc.

(5) ^20aVc^=^ia^^c'X&abc=J'ia^bVX ^5abc

=iabc^oabc.

Remark. It is not necessary tbat the second step of the operation

pbould always be written down, as in tlie preceding solutions; it should be

done, however, by the pupil, on the slate or blackboard, until the princi-

ples are well understood

(6) 3v'24aV=3.,y4a''c2x6=3X2a=cV6=6a%v'6.
4
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(7)
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Article 200.

ADCITION OF RADICALS OF THE SECOND DEGEIii.

(.3) J8=2J2 (4) V12=2V3 (5) J20=2jl>

J18=3J2 J2'7=3JS ^80=4^5

Sum =5^2 Sum=5j3 Sum=6J5

(.6) J24=2J6 (7) V8=2J2 (8) ^40=2^10
v^ 150=5^ 6 ^32=4^2 ^90=3^ 10

Sum =7^6 ^50=5^2 ^250=5^ 10

Sum=llV2 Sum =107)0

(9) j28aV,'=2ahJ7 (10) ^Toa^-c=-^5aj3c (11) JJ=^J3

Sum=Qahjn Bum=VMj3c Sum=j«5V3

(12) J^=i75 (13) Jl=lJ2 (14) 2Vf=73
Jt%=\J^ J8=2J2 3JV2=6J3
Sum=J|V5 Sum=2^V2 Sum=7j3

(15) lJi=iJ2 (16) 3V!=n/6 (17) j48aVx=4acj3x

Sum=V2 Sum=?lJ6 Sum=(4ac-l-2i)V3c

(18) V(2a'—4a=c+2ac2)=VC«-—2«c+c^)X2a=(a—c)V2a

J (2a^+4a^c+2ac^)=V(ffl^+2ae+c^)X2g=(a+c)J 2«

Sum^2a;«y2a

(19) Ja-\-x=Ja^x

J ax'^-\-x'^^xJ a-\-x

J (a+xy=(a.+x)Ja+x
Sum =^{l-\-a-\-'2x)J a-\-x

Article 201.

SUBTRACTION OF RADICALS OF THE SECOND
DEGREE.

(o) ^/]8=3v'2 (3) j46^=SaJ5 (4) J54h=3j6b
V2=V2 J6a^=aj6 J6h=j6b

Dif. =2J2 Dif. =2ajb Dif. =2^64



44 KEYiOPART FIRST.

(5) Jn2aV=4acJY

Dif. =2acJ1

(7) V36^=6aV«

Dif. =ia'Ja' Dif. =2bcjah

(6)
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(12) V|XVf=Vif=VFV5X5=AV5-

a a a' I a^ 6a 3a
(13) .2^-x3^--6^-=e^--X2=-^2=j^2.

(14) 2+V2 fl5) 1+V2
2—72 1—

V

2

4+2^2 1+^2
—2^2—2 —V2—

2

4—2=2. 1—2=—1.

(16) Jx+2X^x—2=^ix+2)ix—2)=^x^—4:.

(17) 7B+a;X Va+^=^ (a-\-x'){a-\-x)^a-\-x.

(18) ^ab+bxX Jab—bx=J {ab-\-bx)iab—bx)=^a^^—b^x^

(19) Va+2X V^+3=V(^+2)(x+3)=: V-<;=+5a;+6.

(20) cja+d^b (21) 7+2^6
clja—dljb 9—5^6
c'^a^cd^ah 63+1876
—cdjab—d^b —3576—10X6

c^a —d^fi. 3—1776. ^ "

(22) Ja-^x-\-Ja—x (23) a;+27oa;+a

Ja-\-x—7*^—""^ •'^

—

'iJax-^-a

(a-\-x)-\-J {a''—x'^) x''-\-'2,x^ax-\-ax

—7C''^—'^^)—('^

—

•'^)
—ixjax—iax—2a^ax

{a-\-x')—(a—x)=2.r. -\-ax-\-2aJ ax-\-ii'

x^ —2ax -^-a'

(24) a;=—a:72+l
a;^+a72+l

xi—x^^2+x''

+x'j2—2x'+xJ2
+a°—j:72+1

««
'

+1.
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Article 203.

DIVISION OF RADICALS OF THE SF, COND
DEGREE.

^ ^ Jbi ,54
,

6^28 6 ,28
(4) 2-7"7-=2-^/T=V4=«•

6V54_6 54_

JI6O 160

(6)

(7)

15^378 15 ,378378 /^-—=3V63=3^9X7==9V7.

ahja^b^ ah a}V

a Ja^ a?

a^i aba hd a 11 a

.^ .d a c ac achd 1

(11) -Ji^'J-=^^X;^=Jq=>J^,j,=^^abcd.

/TQi /^ /I /3 3 9 3 I

^IK^ 3 ,1 1 3 3 2 /1~T 6 /i 6 2
(16) 5^/3-2^^5=6XW3X3=5^/9X5=l-6^/5=5V5.
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1 1 1 h 11, 1 ,

j2+3/-=^2+3^lx 2=^2+1^2=1^2

4V2-r-2v2—4X5V2—20— 10-

Article 204.

J 1 2—

V

3 2—^3
W 2+v'3~2+V3^2—V3- 4—3 -2—V^-

,^, _3 3_ 6+V3 3(6+^3) 1W 6—V3~6—^3^6+^3"" 36—3 — u'-^'rV^^

_ 5 . 5 V7—ye 5(^7-^ 6)

=5(V7-V6).

8 8___ V5+V3 8(J5+V3)
^^^ 75-73-75-^3^ V5+n/3~ 5-3"

=4(75+73).

^') ^5=75X^H^/^=5'^2-^^^°^'^+)=l-'^l'^°'+

3 3^ 75+73 3(75+72)
*^ 75^72"~75-72^ 75+72 3

=75+72=2.2360679+1.4142135+=3.650281+.

72 72 ,75+73_7_10±76
(9) 75=-73-75—73^75+7:J- 5-3

—V^10+76)=t(3.162277+2.449489+)=2.805833+
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Article 205.

SIMPLE EQUATIONS CONTAINING EADICALS OF
THE SECOND DEGREE.

(1) ^(^+3)+3=7.
Transposing, ^(x-{-S)=4:

;

squaring, x-\-Z^l6 ;

fronn which , a;=13.

(2) a:+V(x2+ll)=ll.
Transposing, ;y(x^-j-ll)=ll

—

x ;

squaring, a;--|-n= 121

—

22x-\-x'

;

from which x=£i.

(3) V(6+Vx-1)=3.
Squaring, G-\-^x—1^9

transposing, ,Jx—1=3
squaring, x—1=9
from which x^lO

(4) iJx{a-\-x)=a—x.

Squaring, x{a-\-x)=a'^—2ax-\-x^.

reducing Zax^a^
;

a
fiom which x=-.

(5) Vx—2=V(^—8).

Squaring, x—i^x-\-i^=x—8 ;

reducing, —4^x=—12 ;

dividing, ^a;=3
;

squaring, x:=9.

(6) x+^x^—^=z^.

Transposing, ^x-—7=7

—

x
;

squaring, x''—7=49— 14a;-l-ar' J

from which x^i.

17) 2+^Sx=^5x+4.
Squaring, 4+4^3x-|-3x=5i'-|-4

;

reducing, 4^'3x=2x;
dividing, 2^3x=a;;
squaring, 4X3a:=a;2;
from which .x'^12.
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(8) ji+7=6—V^^.
Squaring, i-(-7=-?6

—

\2jx—o+x—6i

transposing and reducing, Jx—5=2
;

squaring, x—5^4 ;

from wliich x=9.

(9) ^x—a=Jx—-^a.

Squaring, x—a=^x—^ax-\--a
;

— 5a
transposing, and reducing, ^ax=—

;

squaring, ar=—-

;

25a
whence a;^— -.

Id

CIO) 7a;-|-235—V'r—424—11=0.

Transposing, V'^+2i^f' = ll+ ^/ic—424
;

sqiia-:rg, ic+225=121+227x—424+J.'~424 ;

reducing, 528=22^1—424;

dividing, 'H=^x—424 ;

squaring, 576=1—424;

from which a;=1000.

(11) a;+^2ffi^+a;==a!.

Transposing, ^2ax-]-x^=a—x ;

squaring, •2ax-\-x^^a^—2ax-^x^ ;

reducing, 4aa:=a'

;

whence x=-:a.
4

(12) ^^-{-a—Jx—a=^Ja.

Trt.r.sposing, ^x-\-a=^ a-\-^

x

—a;

squaring, x-\-a:=a-\-2^ax—a^-\-{x—a);

reducing, a=2^ax—a';

squaring, a^=4(ax—a^) ;

5a
whence a;=-r.

4

5
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(13) v'^+12=2+Vx.
Sauarinsr, x-\-y2—4->r4^x-\-x

;

[•aucing, 2^yjx,

squaring, a;=4.

(14) j8-\-x=2^1+x—Jx.

Squaring, 8-{-x=4{l-lrX)—4^x+x'+3

,

transposing, and reducing 4^x-\-x''=4(x— 1) ;

dividinir, iJx-\-x-=x— 1
;

squaring, x-\-x^=x^—2x-\-

1

;

reducing, 3x=l ;

whence a:=x.

12
£15) ^5x+-j=^^=Jbx+6.

Multiply by Jdx^, V25a:2+30.i;+]2=5i+6 ;

transposing, ;^25x--l-30a:=5a;—6 ;

squaring, '2bx^-\-30x=25x^—60a;-(-36 :,

reducing, 90.r=:36,

whence, ^=k'

237— 10a;

(16) ^,_4=-^^^-.
Multiplying by 4-\-,Jx,x—16=237—lOx;

transposing, llj;^253;

dividing, a;^23.

V^^+V(17) %/a;24-\/4c2-[-a;+^9a;=+12a-=J+a;.

Squaring, x^-\-'44x^-\-x+j9x^-{-V2x=l+2x-\-x^

;

omitting x^ on each side, and squaring again, we have

4x^-\-x-{-^9x^^ V2x=l~\-4x+4x^ ;

reducing, ^9x'-+]2x= 1+3x

;

squaring, 9j:'-i-12x=l-f6x-(-9x= j

reducing, 6a:=;l,

and ic=-
6
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1,18) ^a-\-^ax=^a—^a—^ax.

Squaring, a-\-Jax=a—2\/ a'

—

asJoix-\-\a—^ax)
;

transposing and reducing, 2%/a^

—

a^ax—a—i^ax ;

squaring, 4(o'

—

a^ax)=a^—ia Jax-\- icu-

;

reducing, 3a'=iax,

3a
whence x=—

.

4

(19) b(^x+^h)=aUx-Jb).
Transposing, a^x—bJx=a^ h-\-b^ b ;

factoring, (a

—

h) ^x={a-\-b)Jb ;

squaring, (a—i)2x=(a+'^)'A
;

whence x^-. .^^ .

(o—i)2

(20) ^x-\-Jax=a—\

.

Factoring, ;,y.r(I4-^a)=a—l=(^a-|-l)(^o— 1; ,

dividing both side? by \-\-^a, and observing tliat \-\-iJa

is the same as ^a-\-\,

squaring, x^^a—1)^.

Article 211.

;inESTIONS PRODUCING INCOMPLETF EQUA-
TIONS OF THE SECOND DEGEKK

(2)
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10j;= Uieir sum, and 7j;= the greater, the lcss=10a>-

Therefore, 10a:X3j;=30.r^=270 ;

from which x-'^9, and x=3.
Hence, 7x=21, and 3x=9.

\13) Let 2j:=: their difference, then 9j: will be the greater, tad

9>r—2x=7x, will be the less.

Therefore, (9x)2—(7a;)-'=128
;

81x2—49x2=128
;

from which x-=-A, and x^2.
Hence, 9x=]8, and 7x=14.

-

t.14) Let x= the cost of an orange, then 3x^ the number ol

oranges.

Then ' 3xX^=3x==48 ;

from which x=4, the cost of an orange ;

and 3x=12, the numbei- of oranges.

(15) Let 4x= the cost of I yard in cents, then 9x= the nam
bor of yards.

Then 9xX4x=36x2=324 ;

from which x^=9, and x^3.
Hence, 4x=12, the cost per yard

;

and 9x=27, the number of yards.

(16) Let ^x and |x represent the numbers.

Then ix-+lx'^=225 ;

multiplying by 4X9i to remove fractions, we have

9x2-|-16x-'=225X4X9 ;

25x==226X4X9 ;

dividing x2=9X4X9;
extracting the sq. root, x=3X2X 3=18.

Hence, ix=9, and |x^l2.

We may avoid fractions by representing the numbers by 3x and

>x, as recommended in the book.

(17) By reducing i, f, and
J-,

to a common denominator, vg

find they are to each otlier as 6, 8, and 9 ; therefore, let

the three numbers be represented by Gx, 3x, and 9x.

Then 36x=-l-64x=+81x2=724 ;

adding, 181x2=724;

from which ,r-'=4, and x=2.

Hence, 6x=12, 8x=16, and 9x=18.
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(18) Let 4a=the price of a yard, then 5a;= the number ol

yards.

Then 20x^= whole cost

;

and — ^ cost of a yard if he had received 45 cents

more for the same piece.

^, L>0,c=-f45
Tlicrcforo, r : 5a; : : 5 : 4

ox

80:c=+I80
whence, =25x ;

multijjlyin;? by 5x, 80a:--|-I80=]2oa;'
;

from which x'^4, and x=2.
Hence, 4x=8, and 5x=10.

Article 212.

COMPLETE EQUATIONS OF THE SECOND DEGREE.

(50) 2ax—x^=~2ab—h^.
x^—2ax=2ali-{-b^, by changing the signs

,

X-—2ax-\-a^=a^-\-2ab-\-b', by completing

the square
;

X—a=±(a-|-t), by extracting the sq. root
;

transposing, x=^.aziz{a-\-b)^2a-\-b, or —b.

(51) x'—2ax=b^—a\
x'—2ax-|-a-=i-, by completing the square

;

X—0=^=/', by extracting the square root;

x==:a±b:=a-\-b, or a—b.

(52) x'+3fcx—4/)==0.

x'-'-\-Sbx=Ab- , by transposing
;

9/,2 9/i- 25i^
x=-|-36x+—-=4^=4—̂ -=—-, by completing the sq. ;

3b 5i
^+^=±^7, by extracting tlie sq\iare root

;

3b bb
•»=—"^i^=- \-b, or —4i.

(53) X-

—

ax—/)x=

—

ab.

x^—(a-|-i)x=

—

ab, by factoring
;

* —(a+i)x+
,

—=

—

—ab= —
;4 4 4
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a-\-b a—

6

a-\-b a—b

a;=-^±-Y-=+a. or+b.

X b

* ^ x-\-a X—b

x^—bx=bx-\-ab, by clearing of fractions ;

x^—2bx=ab

;

x—b=dzjab+b'

;

x=bzizjab+b^.

(66) 2bx^+(a—2b)x=a.
a—26 a

a—2b {a~2by (a—2by a a'+4a.')—4f'
^'+"2*""^+ \m "^

1662 "+^= f^ij ;

a—26_ a+26

a—2b a+2b a

''=-^b-^-^-=^'°'-2b-

\ 2b ) '

x^ X 2a'
(56) :j-T=Ti-

x^—-j-x^^-j-^-, by multiplying by a

8a'> Da"

"462~4J2"T"462'~4i2

a' 3a-

''~2b""^W'
_a^ Zf 2a? a^

'^2b'^'2b^T' °'' ~T-

(5") x'—(a—l)x—a=0.
x^—(a

—

l)x=a
;

a:=-(<z-l)x+-^-=—^-+-=—^ J

B— 1 a-\-l

2 ~-^ 2

a— 1 n+1
=-5-4=-^=a, or— 1.
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(58; x^—(«+*—c)a:=(a-|-/»)c.

jc'—(a+i—<;)a:+ ^ = ^ •V J

a2-f2a&+l=—2ac

—

ibc-\-c'^-\-^ac-\ ibc=
i

= 5- - 4 '

by extracting the square root of both sides, we find

a-\-b—c a+b-\-c

2 ~-^ 2

a-|-6—c a+i-)-c

2
=a-j-i, or

Article 214.

PEOBLEMS PRODUCING'' COMPLETE EyUATIOKS
OF THE SECOND DEGREE.

(6) Let a= the number.

Then x''—6x=7.

from which x=-{-'1, or — 1.

The positive vahie satisfies the given question in an arithmeti-

cal sense, and the negative value satisfies the following question

in an arithmetical sense.

Find a number, such that if its square be increased by fi times

the number itself, the sum shall be 7.

(7) Let x= the number.

Then x'^+8x=9.

from which x--=-\-l, or—9.

The positive value satisfies the question in an arithmetical

sense, and the negative value satisfies a question expressed in tlie

same words, except that increased should be diminished, and sum

Bhould be difference.

(8) Let x= the number,

Then 2x^-\-3x=65
;

13
from which x=-\-5, or ——

.

(9) Let x=: the number

2, ,
5a'

Then -(x'—l)=~ ;
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from which, x=-\-i, or — 7.
4

TliO negative value is the answer, in an aritl.metical sense, to

the following question.

Find a number such, that if ] be diminished try its square, and =|

Df the remainder be taken, the result shall be equal to 5 time!

the number divided by 2.

(10) Let x= the number.

44
Then -=Jx—4 ;X—2 *

44^jx^—4Ja;-|-8, by multiplying by x—2
;

x^— ]8a;=144, by clearing, transposing and changing

signs

;

whence x=-}-24, or—6.

(11) Leta;= the greater number, then x—8= the less.

Therefore a;^—8x=240
;

from which x=-(-20, or—12.

Hence, a;—8=-(-12, or—20.

(12) Let x= the number of sheep.

80
Then —= cost of one :

X

80
also, —r-^cost of one, if he had boufflit 4 more for

x-\-i "

the same money.

80 80
Therefore —r:;+l=—

•

x-\-4 X

80a;-|-a;^-|-4a;=80x-|-320, by clearing of fractions,

a;--|-4x^320, from which a;=-l-16, or—20.

The negative value is the answer, in an arithmetical sense to

the following question.

A person bought a number of sheep for 80 dollars ; if he had

nought 4 less for the same money, he would have paid 1 dollar

thore for each ; how many did he buy?

(1
3^ Let x= the greater number, then x—10=: the less.

600 600
Then -=j^~--=10.

600x—600x4-6000=103;=— lOOx ; by clearing of frct'na

,

whence x-— 10x=600 ;

from which a:=:-|-30, or—20,

and x—10=+20, or—30.
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(14) Let x= the rate of travel.

45
Then —== number of hours traveling at x miles pei

hour;

45
and —j-r= number of hours traveling at (x-\-^) miles

per hour.

45 45
Therefore, ^q37+U=— ;

from which we find x=-\-4, or—4^.

Tlie negative value is the answer, in an arithmetical sense, to

a question expressed in the same words, except that increase,'

should be diminishes, and sooner should be later.

(15) Let x= one of the numbers, then 14—x= the other.

Thenx^+fU—a;)==10l/
;

a;2+196—28x+a;^=100 ;

reducing, x^—14x=—48
;

from which a;=7±l=4-8, or -\-6
;

and 14—a;=+6, or -|-8.

(16) Let x= the number of rows, then x-{-5= number ol trees

in a row,

and a;(a;+5)= the whole number of trees.

Therefore x^-\-5x=204:
;

from which x=-\-l-2, or— 17
;

and a:4-5=-|-17, or— 12.

The negative value is the answer to a similar question, the

word more being changed to less.

V.17) Let x^ the age of the boy, then x—4= his sister's age.

Then 2(a:—4)=+7=x2

;

from which a?^-|-13, or-|-3,

and X—4==-(-9, or— 1.

(18) Let a.= B's rate of travel ; then x-\-3= A's rate,

150 150
Then —---=8

J;

150a;+450—150x=8 Ja-=+25a; ; by clearing of fractions
j

reducing x^-\-Sx=:b4
;

from which a-=-j-Ci, or—9,

ind a;+3=-|-9, or—(j.
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(19) Let a;= the nuin icr in the company at first,

175
then = what each ought to have paid,

175
and -=: what tliose paid who remained.

„. 175 175
Therefore =10.

X—2 X

175a;—175x+350=10x'—20a;, by clearing of frct'ns

;

x'—2a;=35, by reducing ;

from which x=-\-T, or—5.

100
(20) Leta;= the larger number ; then = the smaller.

/ 100 \
Therefore, (x— 1) ( —+1 j =120 ;

^^-=120
;X '

100x+a;2—100—«= 1 20a; ;

a:2—21a;=100;

from which a;=-l-25, or —4

;

100
and =+•*• or—25.

a;2—

4

(.21) Let a;2= the father's age ; then—^—= the son's age.

1 / a;2—4 \

Then-(- 1) =

a;=—

4

—-—

—

l^2x, by multiplying by 2,

x'^—4—3=6a;, by multiplying by 3,

a;^

—

Sx=7, by transposing ;

from which a;=+7, or—

1

a;^—

4

Hence, a;^=49, and —^—=15.

(22) Let x^= her age.

Then •g-+a:=10 ;

20
from which a;=-l-4, or

—

~r-.

Hence, a;^=16, or 44|, the former of which satisfies

the conditions of the question in its arithmetical sense.
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(23) Let a:'= the number.

3a;

Then a'—-t-=22 ;

22
from which x=-]-5, or—-7-

;

Hence, ar'=25, or 19/;, the furmer of whicli satistiet

the conditions of the questio.T in its arithmetics! senso.

(24) Let

Then

and

a;= the number of yards.

600= cost per yard in cents,

selling price per yard in cents.

X

540

Therefore

from which

Hence,

X— 15

600 540

a; ' x—15
'

x=+15, or—120.

600
—-=+8, or —5.
X

The negative values are the answer, in an arithmetical sense

to the following question.

A merchant bought a piece of muslin for 6 dollars : after adding

to it 15 yards, he sold the whole for 5 dollars and 40 cents ; at

which rate he received 1 cent a yard less than the piece cost him

;

liow many yards did he buy, and at what price t

(25) Let : cost, then T7j^= per cent of loss,

x^
Therefore j:—r--=:24.

whence a;=+60, or +40.

Article 219.

EQUATIONS OF THE SECOND DEGREE, COa-
TAININO TWO UNKNOWN QUANTITIES.

(6) x'+f=34, (1);

a;2—!/2=i6, (2).

By adding these equations together, and dividing by 2, wf fiad

i(^=--25 ; from which x=+5, or —6.
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The value of y may be found either by substituting 25 instead

'»' i^, or by subtracting the second equation from the first.

(7) rJ-y=16, (1);

a?y=63, (2).

Th3 values of x and y are readily obtained by finding the value

of either in terms of the other from equation (2), and substituting

It in equation (1) ; or thus :

x^-}-2j^-)-!/'=256, by squaring (1) ;

ixy =252 by multiplying (2) by 4

;

X-—2r(/-l-2/^=4, by subtracting
;

X—y=2, by extracting the square root

;

From these equations, by adding and subtracting, the values of

,r and y are readily found.

(8) x—y=b, (1)

;

a,T/=36, (2).

From Eq. (1) y=x—5 ; this being substituted instead of y in

Eq. (2) gives x'^—5x=36, from which a: is readily found, and then y.

Or, by squaring Eq. (!), then adding it to 4 times Eq. (2), and

extracting the square root, we find x^y=--\\ ; from which, and

Eq. (1), by adding and subtracting, the valups of a: and y are

readily found.

(9) x+y=9, (1)

;

a:2+y==53, (2).

From Eq. (1), y^S

—

x ; this being substituted instead of y ir

Eq. (2) gives, after reducing, a;'—9ar=—14 ; from which we find

ar=7, or 2 ; consequently 2/^=2, or 7.

(10) x—y=b, (1) ;

a;2+y2=73, (2).

From Eq. (1) y=^x—5 ; -this being substituted instead of y in

Eq. (2), gives, after reducing, x''—5a;=24 ; from v/hich x is ibund

=8, or —3 ; hence y=3, or -t-8.

(U) a;'+2/'=152, (1);

x+y=B, (2).

Dividing Eq. (1) by Eq. (2), we find x''—xy-\-jf=\^, (3),

From Eq. (2) y=8

—

x; substituting this value of y in Eq. (3;

and reducing, we have x''—8x=—15 ; from vvhicii we find ,r=^5)

«r 3 ; hence !/=3, or 5.
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(12) x'—1/=208, (])

;

x—y=i, (2).

Dividing Eq. (1) by Eq. (2), we find x''-\-xy-\-y^=5'i, (3).

From Eq. {T),y=x—4; substituting this value of y in Eq. (3;

and reducing, we find x'

—

4j;=12 ; fi-om which x=Q, or —2 :

hencs v^2, or—6.

(13) a;3+y'=19(a;+y), (1);

a;—!/=3, (2).

By dividing both sides of Eq. (1) by x-\-yj

a;2—x!/+y==l9, (3).

From Eq. (2) y=x—3 ; substituting this value of y in Eq. C3)

and reducing, we find x-—3x=10 ; fi-om which x^b, or—2;

hence 2/^=2, or—5.

(14) x+y=U, (1);

x'^—y-—U, (2).

From Eq. (1) 2/=ll

—

x ; this being substituted in Eq. (2) in-

stead of y, and the equation reduced, gives 22i:=132, from which

aj=6 ; hence !/=5.

(15) (a;—3)(y+2)=12, (1);

xy =12, (2).

Performing the operations indicated in Eq. (1) and then sub-

tracting Eq. (2) from it, we find 2.r

—

Zy—Q, (3). From Eq. (3)

6+3y
we find x=—r--, and this being substituted in Eq. (2), gives, after

reducing, y'+2^=8; from which 2/^2, or—4; hence x=Q, or—

3

(16) y-x=2, (1);

3x!/=10x+y, (2).

From Eq. (1) y=x-\-1 ; this value of y being substituted in Eq.

(2), gives, after reducing, Zx''—5,1=2 ; from which a-:=2, or —^ ;

lience, y=4, or 1|.

<17) 3a;2-l-2.ry=24, (1) ;

bx—iy=\, (2).

5a;— I ,

from Eq. (2) y=—-— ; this being substituted in Eq. (1), gives,

36
after reducing, 19x'—20=72 ; from wliich x^i, or —r^ ; lieiico,

199
y=3,or—̂ y.
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1 1 5

1 1 13

Let -=t), and -=2 ; then ti+2=-, fS) ;X y
'6 ^ '

and v^+z^=^, (4).

5 - 5—6v
From Eq. (3) i^j

—

v^—
^
—

; substituting this value instead

of z in Eq. (4) and reducing, we find

1 1

6d^—5v=— 1 ; from which v=t, or- ; and substituting

in the equation, 2=-

—

v, we find 2=5, or -.

1 1 1

Hence, 1)=-=-, or x ; from which x=2, or 3.

1 1 1

z=-=r, or p ; from which !/=3, or 2.

(IQ) x-^j=2, (1).

a;Y-'=21—4ry, (2).

In Eq. (2) let xy=:z, the equation then becomes
2^=21—42 ; from which 2 or xy^3, or—7.

We then have a;

—

y^=2

xy=3, to find x and y.

These equations are similar to those in example 8, and we
readily find x=3, or — 1 ; hence y^l, or—3.

From the equations x—y=2 and xy=—7, we may also finfl

two other values of x and y, but they are imaginary.

Article 219.

PEOBLEMS PKDDUCING EQUATIONS OF THJ
SECOND DEGREE, CONTAINING TWO

UNKNOWN QUANTITIES.

(1) Let X and y represent the numbers^

Then x+y=lO, (1);

x'-+y^=52, (2).

Solved like question 9, preceding.
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(2) Let X and y represent the numbers.

Then x—\j—-i, (1);

a;2—^/'=39, (2).

Divide Eq. (2) by Eq. (1) and we get a:-|-y=13, (3) ; thea from

this and Eq. (1), we readily find x^=.%, and i/=3.

(3) Let x' and y' represent the parts.

Then x'4-y'=25, (1)

;

.r+y=7, (2).

The values of x and y may now be found in the same manner

US in question 9, preceding.

(4) Let x= the digit in ten's place, and y= the digit in unit's

place.

Then 1 Ox-|-3/= the number
;

(10j;+2/)(:r+y)=160, (1);

Dividing Eq. (1) by Eq. (2) we get

10—u^
4!/(a;-|-i/)=40 ; from which x= --.

Substituting this instead of x^ in equation 2, we get

/ 10—2/2 \

clearing of fractions, 100

—

\'iy^-\-y'^=\%y'^

;

from which y=2

;

hence x^3.

(5) Let x= the greater number, and y= their difTerence,

then X—y^= the less.

Then a;y=16, (1) ;

and xy—2/2=12, (2).

Subtracting the 2d equation from the 1st, we get
y2=4 ; hence y=2 ;

IG
a;=—=8, and a;—y=6.

(6) Let X and y represent the numbers.

Then x+2/=io, (1);
m/—(a:—^)=22, (2).

Find the value of either x or y from Eq. (1), and substitute il

instead of Iho same unknown quantity, in Eq. (2).
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This may also be easily solved by means of one ui:knovvn ijuaii-

(ity ; thus, let x= one of the parts, then 10

—

x= tiie other, and

10—2a;= their diiference.

Then a:(10—x)—(10—2x)=22 ;

from which x:=8, or 4 ;

hence 10

—

j;=3, or 6.

The numbers 4 and 6, satisfy the conditions of the qiiestion in

an arithmetical sense. The numbers 8 and 2 satisfy the following

problem. Divide 10 into two such parts, tliat tlieir product plus

their difference, may be 22.

(7) Let X and y represent the numbers.

Then a;-l-!/=10, (1);

3;'4-y'=370, (2).

For the method of solution, see question 11, preceding.

(8) Let X and y represent the numbers.

Then x—y=2, (1) ;

a;'—1/'=98, (2).

For the method of solution, see question 12, preceding.

(9) Let x^ the greater, and ?/=: the less of the two numbers.

Then 6x+5(/=50, (1)

;

xy=20, (2).

20
The value of y, from Eq. (2), is — ; this being substi

tuted in Eq. (1) and reduced, gives

6x'^—50x^—100 ; from which

, x^5, or 3^ ;

hence, y=4, or 6.

The first values of x and y satisfy the question ; the other two

-atisfy a question precisely similar, except that the words greater

and less are transposed.

(10) Let x= the digit in ten's place, and y= the digit in unit's

place.

Then 10x-\-y= the number.

10a;4-?/+27=10y+a;, (2).

From the 2d equation y=x-\-3 ; this being substituted in tlia

Ist equation, we get, after reducing,

2a;---5a;=3 ; from which we find

2=3 ; lience y=6, and the number is 36.

6
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dl) Iiet X, y, and z represent the numbers.

Then ^=a, (1) ;

xz
-=6. (2);

f=c, (3).

Multiply the three equations together, and we have

xyz=:abc, (4).

Divide this successively by each of the equations (l), (2)i

and (3), and we obtain

z-=bc, y'^=zac, and x^=ab.

Hence, x=±Jdb, y=^riz,Jac, and z=^^hc.

(12^ Let X and y represent the numbers.

Then a:+y=9, (1) ;

a;'+y'=2](a;4-y), (2).

Divide both sides of Eq. (2) by x-\-y, and we get

a;2—X2/+y2=21, (3).

The value of y, from Eq. (1), is 9

—

x ; this being substi-

tuted in Eq. (3), we have, after reducing,

x'^—9x=:—20, from which

x^b, or 4 ; hence y=4, or 6.

(13) Let x-\-y, and x—y represent the numbers.

Then the sum of their squares =2x'-|-2j/'
;

the difference of their squares =4i^;
and their product =a:'

—

y''.

Therefore 2a;2-f-2y2—2(a;=—j/2)=4, (1) ,

ixy—kW^')=i, (2).

Reducing Eq. (1) we readily find y=l ; this value being sub-

Eti*uted in Eq. (2), we have, after reduction,

x^

—

&x=—7 , from which x^7.
Hence, a;-l-y=8 ;

and x—^!/=6.

(14) Let x= the circumference of the less wheel, and j/= tlm

circumference of greater.

120 120
Then --=--+6, (1) ;

120 120

120y=120a;-|-6m/, by clearing Eq. (1) of fractions ;

.+ I=^-.H^+4'
(2)
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V20y-{-'l20='[2Qu:-]-120-\-4xy-\-Ax-\-4T/-\-i, by clearing

E(]. (3) of fractions.

116i/:=12^-\-4mj-{-4, by reducing.

From Eq. (1) after clearing, we find y=^{i ; this being sub-

Btituted in the last equation, gives, after clearing of fractions and

reducing,

1 Ix^

—

39j;=20 ; from which

a;=4 ; hence y^&.

(15) Let X and y represent the rates of travel of A and B ;

then 2a= distance A travels in 2 hours at j;

miles per hour,

and 2a;-|-l== distance A travels in 2 hours at

x-\-^ miles per hour.

30

—

'2,x= distance A travels after B starts,

in 1st case

;

42—(2a;+l)=41^2a;= distance A travels after

B starts, in 2d case.

30—2:c 30
Therefore —~=~, (1) ;

41—2j; 42

Clearing Eq. (1) of fractions, and reducing, we find

_ \bx

y^lE'—x'

Clearing Eq. (2) of fractions, and reducing, we get

4l2/—2jn/=43x+J.

Substituting the value of y before found, in this equation

clearing of fractions, and reducing, we get

26a;2—59:r=15
;

from which x=2^ ; hence y^3.

{\0) Let. x^ the number of miles B traveled
;

then a;-f-30=: the number of miles A traveled.

Then since the distance traveled, divided by the number
of days spent in traveling, gives the number of milea

traveled per day,

X
-= A's rate of travel

;

a;+30
—^

—

= B's rate of travel.
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Then dividing tho distance traveled by each man's rate

of travelj

X 4(x+30)
, .

{x-\-Zff)-^-—. = days A traveled.

x+SO 9.r , ^

But they both traveled the same number of days, tlier*.

4(a;+30) Qx
fore,

^7"~=^-f30
'

4(x4-30)^=9j;', by clearing of fractions ;

2(a;-j-30)=3j;, by extracting the square root

;

from which a;=60 ; hence :c-4-30=90,

and 60-1-90=150 miles, the distance from A to B.

ARITHMETICAL PROGRESSION.

Article 222.

(11) Here re=20, n=16yV. f?=48i—lRJj=32J.
i=a-|-(ra—iy=16i'j-|-(20— l)32i= lGi'j-|-611J=627i

Article 223.

(5) Here/=a-l-(n—iy=IO—3X9=— 17.

n 10
*-=y+«)^=(-17+ 1 0)-^ =-35.

Article 225.

EXAMPLES.

n 1000
(1) x=(Z+a)-=(l-f 1000)--^=500500,

(2) Z=fl-l-("—iy=l-Kl01— 1)2=201.
n 101

s=(;-l-aX^=(201-[-l)-,-=10201.
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(.3; First find liow many limes a clock strikes in 12 hours

Here a=l, ;=12, n=12,

«=(12+l)-^=78.

78X2=156= strokes per day
;

156X7=1092= strokes in a week.

(,4) Since the second term is 2, the 3d term 3, and so on, the

nth term is evidently n.

Or thus, l=a+{n—l)d=l+(n—l)l=l-\-n—l=n.

(5) Here d=2 ; Z=I+(7i—I)2=l+2ra—2=2ra—1.

s=(l+a)^={2n-l+l)~nK

(6) Substituting the values of I, a, and d, in the formula,

l:=a-\-(n— l)d, we have

29=2-i-(ra—1)3 ; from which «=10.
n 10

s=(Z+a)-=(29+2)y=155.

V.7) Substituting the values of 1, a, and n, in the formula,

l^a-\-(n— l)d, we have

10=6-|-(9— l)d; from which d=J.

s=(Z+a)|=(10+6;^=72.

fS) Substituting the values of s, a, and n, in the formula,

n
s={l-\-a)-, we have

10
85=(Z+I0)7r ; from which 1=1.

Substituting the values of I, a, and n, in the formula,

Z=a—(ra

—

l)d, we have

7=10—(10

—

V)d; from which £Z=J^.

(9) Substituting the values of a, h, and ra, in the formula,

b—a ,
16—1

d=—r—
-, we have a= . .

,
-=3.

m-\-l 4+1
Hence the series is 1,4, 7, 10, 13, 16, &c.
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ClO) Substituting the values of a, and d, in the formula,

2=a+(7i—ly, we have /=24—4(n—1)=28—4re;

substituting tliis value of I, and tiiose of s and a in the

formula,

n n
s=(;+a)--, we have 72=(28—4ra+24)- ; from which,

by reducing, n^—13?!.=—36.

From this equation m=:-|-9, or -|-4,

(.1 1) Let ra=: the number of acres ; then the nth acre evidently

cost n dollars.

n
Substituting n for I in the formula, s=(Z-|-a)r, and for »

and a their values, we get

n
12880=(7i-f-l)r ; by reducing

B2+n=25760 ; from which re=:160.

Having the number of acres, the average price per acre

is easily found.

(12) Let a;= the number of days ; then on the a;th day, A will

travel xa, or ax miles. Hence, to find the sum of the

series, we have the first term a=a, d=a, and l=ax; sub-

n
Btituting these in the formula, s=^Q-\-d)-, we have

X 1

s=:{ax-\-a)-=-ax(x+ 1 ).

Then in (x—4) days, B travels 9a(x—4) miles
;

1

Therefore -ax{x-\-l)=9a(x—4); reducing,

x'^—17x=—72 ; from which x=8, or 9.

(13) Let n=:the number of hours.

Then Z=o+(ra—l)d=5-|-(n—l)l=4+7i;

s=CZ+<')f=(4+«+5)2=|(9+n).

Therefore o(^+'*)=6(3i+n).

By reducing n^—3n=40 ; from which n=8.

(14) Let x= the number of hours ; then the formula,

1

~2l=a—{n—l)d becomes Z=4—-(x—1)=4J—J^;
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i=Q-\-a)-, becomes •s=(4i—ia;+4)~(8^—i,i:)|

:

but in X days, A travels 3x miles
;

X
therefore 3r=:(8^

—

\x)^ ; dividing both sides by x and

reducing, we find as=5.

GEOMETRICAL PROGRESSION.

Article 229.

(J) In this example the ratio is —-.
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Too much importance cannot be attached to clearness and propriety

of expression. Accuracy of style has a tendency to produce accuracy

of thought. Every definition should be expressed in language the most

precise, brief, and clear, of which it is susceptible ; while all explanations

and directions, whether contained in the text book or delivered by the

teacher, should be given in such a manner, that the pupil cannot possibly

mistake the meaning.

Lost some should regard matters of this kind as unworthy of notice*

it is proper to add that great attention is paid to them by the French

Mathematicians ; hence, many of their works exhibit a perspicuity and

simplicity, and a logical clearness of arrangement, which add greatly to

their value.

" Place the two quantities under each other." This is not possible, one

of the quantities may be under the other, but each cannot be under the

other at the same time. It should be specified which is to be placed

below the other.

" Subtract the numerators from each other." It should be specified

which is to be taken from the other.

" Find the diiFerence of x''—a^ and a^." When numbers are referred

to, this expression is correct, but in the case here presented, the differ-

ence is either x'—2a.^, or 2a^—x^. It should always be specified which
of the two quantities is to be subtracted.

" Divide tlie numerators by each other, if thejj will exactly divide."

This expression has no clear meaning, and the word divide at the close of

the sentence is used improperly.

"The two first numbers." " The three first numbers," &c. These
expressions are frequently used. When two or more things are consid-

ered in regard to order, only one can proj>erly be called first ; hence, there

is no such thing as the two first. However, we can with propriety say
" the first two," because there may be a second two, a third two, and
so on.

" Neither the first nor the last terms are squares." This should be,
" neither the first nor the last term is a square."

"This value is the greatest of all others." Here others ought to be
omitted, or it might be, " this value is greater than any other."

" An equation of the second degree or power." Equations are of
different degrees, but no equation is of the second or any other power.
These examples might be greatly extended. The preceding are given

merely as specimens. Such expressions confuse the mind of the pupil
and often prevent a clear and accurate understanding of the subject
under examination. Thoy cannot, therefore, be regarded with indiifor-

enc« by aaf one who aspires to the character of an accomplished teacher.
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0:5" The numbers in parentheses, as seen in the margin, refer

to the corresponding number of example, under the same article

in the Algebra.

GREATEST COMMON DIVISOR.

Article 108.

Note.— This article contains the first examples in the Algebra which

the attenlive student will find any real difficulty in solving.

(5) a''

—

x^ \a'-\-a^x—5a;'—a;'

—a'x-\-a-x''-\-ax'—x^

=-x(ia^-a^x-ax''+x^) ^fter dividing we find the

a'—a^x—ax^+x' ^"^^^ remainder contains a fac-

a'+a'x—ax^—x^ ^°^' —^' "°^ ^°^^^ '" ^^ '^'"

visor, hence it should be can-
-Ha^-x +2x^

^.g,gj_ See Note 3.—2x(o'—x2)

By dividing a^-\-a^x—ax^—x^ by o'

—

x^ we find there is no re-

mainder, hence the latter is the greatest common divisor required.

(6)
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X— 1 will be found to divide x'—3j;-1-2 without a remainder;

it is, therefore, the greatest common divisor.

Note.— In the solution of the remaining questions in this article, wa
shall merely exhibit so much of the operation as is necessary to show
how the greatest common divisor is obtained. . The reasons for the dif-

ferent steps of the operation will be found in the rule, or in the rotes

following it.

(7) a^—5a;'+16a:—12 |a;'—Si^— I5a;-|-16

jy*—23;'— 15j4-16 |1

—ax'^i+Sla;—28

—3x3+ 6i=-|-45ar—48 j-Sa^^+S 12—28
—3x5+3 lx=—28a; |x+25

—25x2+ 73;c—48 . . . Mult, by 3.

—75x=+2l9^—144 The 4th line is obtained

—75x +775x—700 by multiplying the divisor
' —556X+656 by —3.

—556(x— 1) Ans. x—1.

(8) Multiplying the first polynomial by 2 to render it divisible

by the second, and dividing by x (Note 3), we have

42x2—52X+16
|

6x2—X—

2

42x2— 'jx.—li ~]7

^45x +30
—I5(3x—2). Ans. 3x—2.

(9) 2x^+1 Ix'—13x2— 99x—45 j2x'—7x2—46x—21
2x''— 7x^—46x2- 2]x |x-|-9

18x='+33x2— 78x— 45

1 Sx^—63x2—41 4x— 1 89

96x2+336x+144
48(2x2+7x+3) Am. 2x2+7x+3.

(10) Multiplying the first polynomial by 7 to render it divisible

by the second, we have

7x''+ 14x2+63 |7x3—11x^+15j+9
7x''—l]x-'+15x2+9x |x+n

ll'^'— x'— 9x+63 . . .. . Multiply by 7.

77x3— 7x2— 63X+441
77x3—I21x2+l65x+ 99

1 1
4.1--'—228X+342

114(x=—2.(;+3) Alls. x'—2x-\-3.
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ill) Jlultipiying the second polynomial by 2, and dividing by

the first, we have

48;r=i—44j:=+34a;—10 |48a:^+16j— 15

48a;=+16x'—lox |x—

5

'

—60x^4^ 49x—10
'

—;240,r2-l-196.-<;—40

—240x=— 80X+75

276x— 1 15=23(12x—5)
Ans. 12x—5.

(12) This example presents no dilSculty whatever

(13) x^+aV+a" Ix^+ax^—a^x—a*
x''-{-ax^—a'x

—

a^
1

1

—ax'-\-a^x''-\-a^x-\-2a'*

—a(x'—ax''—a^x—2 a^ )

x''-\-ax'—a'x —a^ \x'—ax^

—

a^x—2a'

x^—ox'

—

a''x^-^2a^x |x+2

a) +2ax'+ a^x^-\- a'x— a''

-|- 2x^— 2ax^—2a^x—4g-^

+3g) + 3ax'+3a^x+3a3

x^-j-ffx-j-a^ Ans.

(14) In this example 2i is a factor of the first polynon-.ial, and

33 of the second. Canceling these factors, arranging the terma

in both, and multiplying the second by 4, to render it divisible b?

the first, we have

12a3—I2a26+4ai=—4&3 |4a°—5a&+6^

12a3—15g^&+3a&^ |3a+3A

4

I2a^6+ 4ab'—l6b^
12g'&—15a6^+ 36^

19i=(a—6) Ans. a—b.

(15) x*^px^-\-(,q—l)x''-\-px—q
|xi

—

qx^-\-(j)—l)x^-\-qJil—p

x^—9x'+(p

—

l)x^-\-qx—p |1

(See next page).
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'^q—p)r'-\-iq—p )a:'—(?—p)^—(7—P)'

or x'^x^—X— 1. by dividing by 9

—

p

x'^-{- x'—x^^x \x—(?+0
—(7+ 1 )x'+px''+{q+\)x—p
-(q+\)x'-{q+\)x'+iq+ \)x+(q+i)

LEAST COMMON MULTIPLE.

Article 113.

(4) From Arts. 85 and 86 it is obvious that a-\-x is the onl^

divisor of both the quantities. Hence, (Art. 113) (a'-|-a;')

(a^

—

x^)-i-(a-\-x)={a^-\-x^){a—x)=a''—a^x-]-ax^—x*. Atis.

(5) The quantities separated into their prime factors are

2X2a(a+a:), axaxSjJ'Ca—a:), and 3x3X2(a+a:)(a

—

x) ; from

which we readily see that the least common multiple is 2X2X3
X 3ax\a+x){a—x)=zeax\a^~x-).

(6) The first quantity divides the second, but not the third,

and the second and third have no common factor ; therefore, the

least common multiple of the three quantities is the product of

the second and third.

(7) By examining these quantities we see that the second

quantity is divisible by the first, and the fourth by the third, and

that these are the only cases of divisibility among the four quan-

tities ; hence, their least common multiple will be the product of

the second and fourth quantities.

(8) By factoring the several quantities, we find the first is

=(a;-|-l)(a;— 1), the 2"^ z=x^+\
;

3"' =(x—l){x—l); 4"*

=(x-\-l)(x+l); 5'* =:(x~l)(x'+x+iy, &" =(x+l){x^—x+i

,

It will now be seen that if we omit the third and fourth quantities

the remaining quantities vill contain the factors of these, and no
other factor not necessary to be found in the last common multi-

ple. Hence, the 1. u. m. will be {x'—I)(a;=+l)(i3_i)(x3-f i)

=(a;<—1)(j:8—l)=a;'»—a;6—a;''+l.

i9) It is easily seen that 8 is the least common n ultiple of
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the numerical factors, and that of the literal factors, 1

—

x, is the

only one common to two of them. Hence, the least common
multiple is 8(1—j;)(l—x)(l-l-j;)(H-a:')=8(l—a;)(l—x')(l+a;2)
=8(1—x)(l—x^).

(,10) We first find the greatest commcn divisor of the 1" and 2"°*

polynomials, to be x—3 ; then of the 1" and 3"' to be 3x— a.

Hence,

„ , , , ,
„ , „, ,„ „. "1 It is evident the leastW—lla;+6= (a;—3)(33:—2) \ , . , .

2i2— 7x4-3- (v—3Yix—l^ I
common multiple is

TO REDUCE A FRACTION TO ITS LOWEST TEKMS.

Article 119.

The only difficulty in solving any of the examples in this arti-

cle, consists in finding the greatest common divisor of t!ie two

terms. In general it may be easily fo\jnd by the rule (Art. 108)

and in most cases by mere inspection. Thus :

(^13) From Art. 86 we know that x-\-l is a divisor of the de-

nominator ; and, by trial, it will be found to divide the numerator.

(14) The numerator is the square of 2j;—3a (Art. 79), and from

Art. 83 this will also divide the denominator, since 8x^—27a'

=(2x)'—(3a)'.

(15) Canceling x in the denominator and multiplying the other

factor by 5, we have

135x'-|-315x2—60x—140 |i5x'-|-35x^+3x-|-7

135x'+315x='+27x+63 |9__

—S7x—203
—29(3x-j-7). g. c. d. =3x-[-7.

(16) Setting aside the factor 2, which is common to all lb*

terms of the numerator and denominator, as a part of the coin

mon divisor, and then multiplying the numerator by 4 to render

it divisible by the denominator, the reniaindei of the operation to

6iid the g. c d. is,
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4x^+16x^y+32xjf+32y^ \4x^+2xy—12y^

4x3+ 2x'y—\2xi/ \x

2

28x=7/+88a;^2+64y |7y

aSj^y+ltoy^—84i/3
'

74j;(/2+ 1487/3

74i/'2(a;+2)/}.

T+ay will be found to divide 4x^+2xy—l2y', -herefore

2{x-\-2y) is the greatest common divisor of both terms.

(18) ac+ by+ ay+bc=(a-\-b)c-]-(,a+b)y =ia+b)(r,+y) ;

af+2hx+2ax+hf={a+b)f+{a+.b)2x={a+b)(f-Jr2x).

Hence a-\-b= greatest c. d. of both terms.

( 1 9) 6fflc+

1

0hr.+9ax-[- 1 5ix=i2c-\-Sx)3u+(2c+3x)56
=(2c+3x)(33+5t).

6c2+9ca;—2c—3j:=(2c+3j;)3c—(2c+3x)
=(2c+3x)(3c— 1).

Hence 2c-j-3x= greatest c. d. of both terms.

(20) x8+x62^'+x22/4-y5=(x^4-!/2)x6+(x'4-y=)!/

=(x'+3/=)(x'i+2/) ; x*-^'={x^+y'){x'^').

Hence x^-{-y^=: g. c. d. of both terms.

(21) a'+{a-\-b)ctx+hx-'=(a^+bx)a+(a'^-{-bx)x=(a'+hx)(^a-\-x),

a<—b^x^={a^-\-bx){a'—bx). Hence a'-\-bx= g. c. d.

(22) ax"—ix'"+'=(ai

—

bx'^)x"'-'^x{a—ix)x'"-' ; a^bx—I'l'

=bx{a^—bV)=bx(a-\-bx)(a—bx).

Hence x(a—tx)= greatest c. d. of both terms.

C23) acx''-[-{ad-\-bc)x-\-bd=ax{cx-\-d)-\-b{cx-\-d)

={ax-\-b){cx-\-d)
;

a'x-

—

b^=(ax-\-b)(ax—b). Hence ax-\-b= g. c. d.

(24) a^+ab^—aVi—P=a{a'+b^-)—b{a'+b')=(ia—b)(a'+r-).

4a^—2a'^b^—ia^h-\-2ab^=2a\2a''—b'')—2abi^2a^-—b')

=(2a2_2a6)(2a=—/;')=2a(a—i)(2a=—i2).

Hence a—b is the greatest c. d. of both terms.

(25) 2a''+ab—b^=a'+ab-\-a'—b^=a{a+b)+(a+b)(a—b)
=(a+i)(a+a—/0=(a+6)(2o—'0-

a^+rt^i—a—i=a=(a+i)—(aH-;;)=(a=— l)(<7+l;|.

Hence a-\-b is the greatest c. d. of liotb terms.
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Art. 120. Ex. 7.— The following is the operation of finding

Jie greatest common divisor of the two terms :

3a;'—3x2—63X+135 lSjc^^2x—2\

—x^— 42a;-)- 1 35
"

3

-3x2—126X+405
—3x2-)- 2x4- 21

—128x-f384
—128(x—3) X—3= g. c. d.

ADDITION AND SUBTRACTION OF FRACTIONS.

Article 130.

EXAMPLES IN ADDITION OF FRACTIONS.

(12) Reduce the first fraction to the same denominator as tho

second, by multiplying both terms by x-\-a ; the sum of the first

two fractions will then be found to be "^ The sum of this
{x+ay

and the third fraction is then readily found by multiplying each

numerator by the denominator of the other and taking the sum of

the products for the numerator of the result, and the product of

the two denominators for the denominator of the result.

(13) The least common multiple of the denominators is readily

found to be 4a^ia+x)ia—xXa^-{-x')=4,aKa*—x^). We then find

for the numerators of the respective fractions, the following

quantities :

l*" (a—^x)(a'-)-x') . . . . = a^-\-ax^—a'x—x*

2"^ (a-)-x)(a'-)-x2) . . . . = a^-lrax'-\-a^x—x'

3"' 2a(_a-\-x)(_a—x) . . . =2a?—2gx'

Sum =-^—-; r= -T-^4- A^-
4aXa'^—x'^) u'—x

(14) It is most convenient to make the common denominator

o( the fractions, ahc(_a—b)(a—c)(h—c). In doing this we must

change the signs of the factor, b—a, in the denominator of the

second fraction, which may be done if at the same time we change

'Jie sign of the numerator (Art. 124). The value of the third
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fraction will not be altered if we change the signs of loth the

factors c

—

a and c

—

b, so as to have a—c and b—c. Hence

] _ hcQ)—c)
.

a{a—b){a—c) abcia—b){a—c)(6

—

c)

1 —ac{a—c)

b{b—a)(b—c) abc{a—b){a—c)(i—c)

"

] ab{a—h')

:{r.—a)(c

—

b) abc(a—A)(a—c)(6—c)'

The sum of the numerators is bc(J)—c)

—

ac(a—c)-\-ab(a—A),

v.liich, by performing the multiplications indicated, and reducing

gives the same result as (a—b)(a—c)(i—c). Hence, this product

may be canceled in both terms, and the sum of the three frac-

tions is found =—

.

abc

EXAMPLES IN SUETKACTION OF FKACTIONS.

(14) By reducing the third fraction to its lowest terms it be-

X
comes The second fraction subtracted from the first

leaves —"r y~ry_ Subtracting the preceding from this leaves

^+y'= l. Ans.

1 1 _2{x-\-l)—(x—l)_ x+3
.

(15)
x—1 2(x+l) 2(1=— 1) 2(0:2—1)

a+3 _ x+3 _{x+3){x^+\)~ix+S){x^—i)_ x-\-3

2(x=— 1) 2(ap2+l) 2(a;''— 1) a;'—
1"

U6)
1+1_1^1+--'

Ant

X^ X' X X'

x—1_ I _x^—x''-\-x—\—l_^x^—x''+x— 2

x2+l (x2+l)2 (x2+l)2 (a:24-i)r--

\J^x—x^_\-\-x—x^' W^-'^y^—x^-\-x^—x'+'ix^+x^-\-x^l

? x^ (^2+1)2 a''(j;2-t-l)*

x^—x^-\-x—'ix^ _!fi—x^+x*—-2x^
X -

(x'+i)' x' x'(x-'+^y

~ x--l-a'-l- 1 .

Sum ?= - -i -
' — Ans

x'ix-'+iy
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MDLTirHCATION AND DIVISION OF FRACTIONS.

Article 131 .

Remark.— In the solution of all questions in multiplication or division

of fractions, it is iniportaiit to separate the quantities into factors, before

performing any actual multiplications, as this might so involve the fac-

tors that they coukl not be readily discovered. By attention to factoring

nearly all tile examples are easily solved.

(U) X^-\-X+l

1 +'-+\

~x—\

4-x'+j:+1

x=+l+.

(12)
ia.Zx
3i 2i

26, Sx

Zx 4a

Sab

8ab

8aA , 2 I

9i^

9x^ M»

(U, pr+{pq-\-(ir)x-{-q^x^=(p-\-qx)r+(j>-[-qx)(iqx=(j)-]-qx)

(r-lrqx) ;

ps-{-{pt—qs)x-^qtx''=(j)—qx)s-{-(p—qx)tx=(p—qx'){s-\-tx)

The factors in tlie denominator of the product will cancel the

factors p—qx and p-\-qx in the numerator, leaving for the result

(r-\-qx){s-\-tx)=zrs-\-{rl-\-qs)x-\-qlx^.

ii-ticle 133.

(8) In solving this and tho next two examples, first perform

the operation indicated in the parentheses. A similar remark

applies to example 12.

f,.. ^, 1 _x>-\_{x'~\){x>+l)_{x-'^\)ix^-\){x''+l)
.

^^^' ^ J^ i^ X'
'

1 X- 1

a^_|_l)(x2_i)(a;<+l X _(x2+l)(r<+l)_Ky-Ky-^H-l
3?

^^,34-^+1+1 or a;3+L+a;+i.

This example may also be readily solved by ordinary division,.
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Article 133.

Remark.— In the solution of the exannples in this article the first step

Is to perform tlie operations indicated in the respective terms. By doing

this they are all easily solved, e.xcept the 5th, of which the solution i<

here given.

i+i_='y-J=(*±lX^^:^y±\ (Art. 83);
a aJy' a¥ a¥

^h b

^b+iW-b+i) _b J,+i ^„^
abi '^J3_j_l_i ab"

KISCELLANEOUS EXEKCISES IK FKACTIONS.

(2) To reduce these fractions to a common denominator, it

will be most convenient to change the, signs of the factors as in

the solution to Ex. 14, Addition of Fractions, so that the common
denominator may be (a

—

b){a—c)(i—c).

a2-|-a-|-l _ a2_|_a_|_i ij—c_a^l^-a^c-lrab—ac+h—c_

(a—b)(a—c) (a—h)(a—c) b—c (a—?;)(«—c)(6—c)

—V—b—i _ —b^—b—l a—c_—ah'^-\-b^c—ab+bc—a-\-c
.— -X - — '

{a—b)(h-~c) {a—b){b~c) a—c {a—b){a—c){h—c)

c'^-\-c-\-\ c^+c-l- 1 a—h ac~—hc^-^-ac—bc-\-a—h— X - —
(a—c)(i—c) (a—c)(i—c) a—h {a—b){a—c){b—c) '

d a^b—ab'—a'^c-\-b^c-\-ac'—bc^ ,Sum =--— '-- J =. Ans.
a^b—ab-—a'c-j-w^c-j-ac^—tc'

(S) Perform the operations indicated before substituting the

ralue of X.

3 4 12 ' 'W ^IIl~"6(^— 1)

'

-— \
~^~^

l
=3_x(x—l)-f^-j-9_3x'—2x4-9

2 /6(x— l)i 6 (x— 1) ~6(i::^V'

SX'fj"—8;+9 SB; 170 „., ,

6X31 20 60
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(6) x+2a= l"" +2a:
a-\-b a-\-b

a-\-b a-{-b

1" fraction
_eab+2a^_3b+a_-a-3b

2ab—2a^ b—a a—b

x+2b=^+2b=^.^!!±^;
a-\-b a-\-b

x-2b=^-2b=^J±^;
a-{-b a-\-b

2"^ fraction =e_±t^'^3a±b

—a—Sb_^3a+b_2a—2b^^_ j^^
a—b a—b a—

6

(^7) Substituting the value of x we have

a"
,

i»

2na"

—

na"—rib" 2nb"—na"—nh"

_ a"
,

b" "" 4_ —^"

na"—nb" nb"—na" na"—nb" na"—nh"

a"—b" a"—h" 1

na"—rei" n(a"—b") n
Ans.

X V

(8) ^4i/_^;2!^_l
1

1

xy 1 'ip'x

Similarly ^—y

_

^y ay_l_l
xy \ y x'

By dividing bntb

terms of each frac-

tion by xy, and re-

ducing.

(9) Let X represent the value of one fraction, and y that of

the other ; then x-\-y:=\.

Multiply each side of this equality by x—y (see Note, page 61),

and we have

x^—y^=x—y, which proves the proposition.

f]0). Let X and y represent the fractions, then

-^=E; m
?

Qc—y)=p.

X—y=- ; multiply bot?i sides by q, then
?
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Multiply both sides of this equality by ^-(-y ; then

or p{x-{-y)=q(x^—y').

(11) First.— Let (a

—

h)(a—c)(b—c) be the common denomina-

tor of the three fractions, then we must change the signs of the

numerator of the second fraction, and the signs of the first fac-

tor of the denominator. We must also change the signs of both

factors of ihe denominator of the second fraction. Tlie numera-

tors of the respective fractions when reduced to a common
denominator will be

(a=+A2)(i—c)= a'b—a^c-\-hV—cV
;

(_i2_7j2-)(a_c)=_ai2-l_J2c_aA2_|-cA2;

(c=+A=)((z—i)= ac2—fe2+aA2—Wi2.

Sum of the numerators =a^(b—c)

—

h''(a—c)-\-c-(a—i) ;

(a—i)(a—c)(6—c)=a'(i—c)—i=(o—O+c^a—i);

hence the value of the fraction is 1.

Seco7ld. (ffl2+A2)(J_c)(J+c)= a4'—(/c^+hW—c^h^;

—!iO^+h^)ia—c)(a+c)=—a''h''+hV—aVi^-jl-c^h^;

(.c''+h^)(a—hXa+b)= a'J^—b^c^+a'-h^—b'A".

The sum of the numerators is 0, hence the sum of the fractions

is 0.

TJiird. (flS-fA2)(J_c)ic= a^'c—a^bc^+J'^ch^—^cVi^
;

—(b'^+h^){a—c)ac=—a^^c-\-ab^c^—ahh'+acVi^

(fi'-\-V){a—b)ab= a^c'—ab^c^-\-a^bh^—ab'^hK

The sum of the numerators is V^a-(b—c)—i=(a

—

c)-\-c'^(a—I) (

and since the denominator is tlie quantity within the brackets, the

value of the fraction is h^.

EQUATIONS OF THE FIRST DEGREE.
Remarks.— The attentive student will find no difBcully with the ex-

amples in Articles 151, and 153, provided he attends carefully to the
rules. (See Remark on page 14, of tlie Key to Part First.)

The ease and facility with which several of the examples may be
solved, will depend on the particular method of solution The shortest
inelliods, however, are not always the best for learners, [t is important
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even at the risk of being tedious, that the pupil understand every step

of the operation. Let the aim be first to perform the operations cor-

rectly and understaudingly, and after this with facility.

In some cases it is better to perform tlie operations indicated before

clearing tlie equation of fractions. To illustrate this we will take

example 27, Art. 153.

Blultiplying the terms in the parentheses in the second member

fcr — and removing it, we have

6x ,
1

—

.Sxi ( X—^ ) —1 {\—3x)=x-
''

\ 26/13 39 15.6

tiovf 156 is evidently the least common multiple of the denom-

inators. Multiplying both members by this, we have

78a;—153—24+72a;=156x—20.-C+10—3a;

;

reducing, 17x=187, whence a;=ll.

QUESTIONS PRODUCING EQUATIONS Of
THE FIRST DEGREE.

Artie 1 e 154.

(.9) Let 0!= the first, then 2x= the second, and 3x= the third:

and a;4-2a;-(-3a;=133.

Whence a;=19, 2a;=38, and 3a;=57.

(10) Let x= the first, then 3a:= the second, and 4ia;= the

third ; and a:+3a;+4^a;=187,

Whence x=22, 3a;=66, and 4^a;=99.

(11) Let x= the second, then 3.'x= the first, and Six—a;:=100.

Whence a;=40 and 3^x=140.

(12) Let x= the first, then 3ja:= the second,

and 100—(330;—a;)=100

—

2^x= the third.

Then a;+3ia;+100—2ia;=156.

Whence a;=28, 3ia;=98, and 100—2la;=30.

13^ Let x-= the number, then

^-l-^_-\-^—62.
2 3 4

Whence 1^.^=52, and x=48.
12
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(14) Let x= the number, thnn

x+^—20=45.

Whence x^35.

15) Let x= the number, then

3 4 6

Whence a;=36.

(16) Let 3c= the number, then

4a;—40=40—a;.

Whence x=l6.

17) Let x= the number, then

4(a:+16)=10(a;+l).

Whence a;^9.

(18) Let x^ the less number, then SO

—

x^ the grcci'er,

and -j(30

—

x—x)=3.

Whence x=9, and 30

—

x=21.

(19) Let 0,-= the number of days he worked, then 28—r- < id'e

days;

then 75a;—25(28—a;)=1200.

or fa;—1(28—a;)=12.

Whence fa;—7-l-^a;=12, or a;=19.

1,20) Let a;^B's money, then 3a;=A's,

and 3a;~l-50=4(a;—50).

Whence a;=250, and 3a;=750.

(21 xjBt a;= sum, then x—_a;—20=-—20;
2 2

?_20-i ( ?-20 ) -30=?-?-50+??=^-ii*'
2 3\2 / 26 333
^_110_l('^-l=L^)-40=0
3 3 4 V 3 3 /

Whence a;=290.

^22) Obsei-ve that 20 per cent, is 5 and 25 oer cent, j
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1 5 -r 1 1 fia:

Let x= capital, then x-\-— =—1-= cap. close 1" yr.
100 100

115a;
I

1 f 115x 115a;, 23a; 138x „„j ..+- of = +—= = cap. 2"''yr.
100 6 100 100 100 100

138x , 1 e 138^; 138a:
,
69a; 345a; ..^4-_ of = +.

—

= = cap. 3'^'' yr.
100 4 100 100 200 200

.-. il^—a;=1000.50.
200

"Whence a;=1380.

,23) Let x= B's age, then 2a;= A's,

and 3(a;—22)=2a;—22.

Whence a;=44, and 2a;=88.

(24) To avoid fractions we may take some multiple of x that

is divisible twice by 2. Thus,

I^et 4x= cost of 1" house, then 4a;-l-2a;=6af= coat of 2"'',

and 6a;-l-3x=9x= cost of 3'''',

also 4x-\-9cc=l'ix= cost of 4'*.

Hence 4a;4-6a:4-9a:+l 3x=8000.

Whence 4a;=1000, 6a;=1500, 9a:=2250, and 13a;=3250.

C25) Let a;= gallons third conveys in 1 minute,

then 8a:=: " " "

and 3x+8= galls first "

ajso 3a;—7= " second "

9a;-l-I= " a-U convey

72a:4-8= " "

.'. 72a;+8=i050.

Whence a;=14|g, U3x+8)=nis ; -J(3a;—7)=12/g,

(27) Let x= the number of days in which B can do it,

then -= part B does in one day : but A does— , ar J A
X 10

and B together do _ in one day ;

.-. 1—J_=l Whence x=23-
7 10 X 3'

(28; Let x-= the number of days in which A can do it,

" 3
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1 12 1

then ^= part A does in une day : but A does _ of _=

—

f

X 4 7 14

in one day ; .-. -=— . Whence x=14.
'

a: 14

If A and B finish | of the work in 6 days, they do \ of 1=4^.

m one day ; and since A does yj in one day, B does jj—^'4=2'^

io one day, or the whole in 21 days.

The solution of this question mainly depends on arithmetical

analysis, and the employment of algebraic symbols can scarcely

be said to be of any advantage.

(29) Leta;= number of each, then %x=- cost of sheep, 12x=^

cost of cows, and 18x= cost of oxen.

.-. 3J:+12x+18a;=330.

Whence 1=10.

(30) Let x= sum A rec'd, then x—10= what B rec'd
;

a:—10+16=x+fi= wliat C rec'd ; x+6—5=^4-1= what

D rec'd ; x4-l+15=x+16= what E rec'd.

.-. a;+I+a:+16=x+x—lO-fx+e.
Whence a;=21, what A rec'd, from which, what the others

rec'd, is readily found.

(-il) Let x= the number of eggs, then —= number of dozen,

and —X18=—= cost.
12 2

"' = number of dozen if he had bought 5 more, and

since the whole cost divided by the number of dozen,

must give the cost of one dozen, therefore

3x X 1 5—-i—^!^= cost of one dozen under second supposition

Zx_^-\-h_^x^ 12 _ 18x
.

Y ' ~12~ ¥ x+5 x+5

'

.-. 18^=18-21=151
a;+5 2 2"

Whence z=31. y

91
(32; Let x= the number bought, then _= cost of caco

X

and \{x—7)=: one-fourth of the remainder.
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20-r-Ka>—7)=20X --=-^= what each soli) for.
X—7 X—

7

. 94 80 ,„,
• • —=— . Whence x=Al.

X X—

7

133) Let x= the number ui" hours each traveled, tlien -X3
2

33? X hx=—= miles A traveled, and -X5^—= miles B traveled;
2 '44

.-. !^-|-5^=154.
2 4

Whence x=56, ^=84, and ^=70.
2 4

(34) Let x= the number, then

5^=?i+i3=^.
6 ^

Whence x=54.

(35) Let a;= number of dollars, then 3x=r. number of eagieg.

.-. 5(x—8)=3a;—8.

Whence a;=16, and 3x=48.

(36) Let x= number of apples, then 100

—

x= number of \aeara

then -^XI=—= cost of apples ;

10 10

, 100—a:, ^„ 200—2a; . ,
and X2= ;—= cost of pears;

25 25

X , 200—2x_g

,

To 2~5
-'

Whence a:=75, and 100—j:=25

(37) Let x= number of sheep,

then _= acres ploughed, and _= acres of pasture;
8 6

.-. ?+?=325. Whence a=1000.
8 5

(38) Let x= miles he can ride,

then —=: time of riding and -= time of vralking;
12 4

.-. -^+f=2. Whence x~6.
12 4



90 KEYTOPARTSECOXD.
Q

(30) Let a;= number of ]bs, then = lbs of salt in 1 Ibi

65-1-a;

and 25 |
_1_ ) = lbs of salt in 25 lbs.

V 65+x /

.-. 25 I
^

] =1. Whence x=U5.
\ 654-x / *

(40) In every 10 lbs of the mass there are 7 lbs of copper and

3 lbs of tin ; hence in 80 lbs there are fgx'7=56 lbs of

copper, and foX3=24 lbs of tin.

Let 3;= lbs of copper to be added, then b6-\-x= lbs of copper

in the new mass, and 24= lbs of tin ; and since there are 11 lbs

of copper for every 4 lbs of tin, one-eleventli of the copoer must
be equal to one-fourth of the tin.

56+a; 24 .,.,
.-. —'—=— Whence a;=10.

11 4"

(41) Let x= stock, then a;—250+i(a;—250)=f^ -1^=:
O do

Stock at the close of the 1" year.

4a;_1000_25o='*^_''SO ;andl5-i!^+i(t-i^)
3 3 3\ 3 3 f

=—— = stock at close of 2"^ year.
9 9

•'

16.r_7000_^gQ_16j_9250 . ^^^ 16^_9250
"9~ IT " "^ 9 '

~9~
9

, 1 / 16x 9250 \ 64r 37000 . , » , , ,,+- I
—— = — = stock at close o*^ 3"^ vr

3\ 9 9/27 27

64x_37000_^^
"27" 27 '"

Whence j;=3700

SIMULTANEOUS EQUATIONS OP THE FIRBI
DEGREE, CONTAINING TWO UN

KNOWN QUANTITIES

Article 158.

f 17) Divide the second equation by a—b and we have

(a+i)(x+y)=-^;
a—
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or (a+6)x+(a+%= "
; (3).

a—
(a

—

b)x-\-(a-l-b)i^=c
; equation (P

2J>r= —c ; by subtracting (1) from (3;
a—b

Again, dividing the second equation by a-\-b, we have

a-\-b

or (a—J)a;+(a—%= -^ ; (4)

(3—6>+(«+%=c
; (1)

2by=c— , by subtracting (4) from (1).
a-\-b

^'~2b \ '^~^b I

(.8). By multiplying eq. (1) by m, and (2) by re, and subtract-

ing, we find the value of x. Again, by multiplying (1) by

n and (2) by m, and subtracting, we find the value of y.

'19) Multiplying both equations by abc, transposing and factor

ing, we have

{bc-\-ab)x-\-acy=abc

;

(1)

acx-\-{bc—ab)y=abc ; (2)

Multiplying the first equation by be—ah, and the second by ac,

we have

(J)V—a-b'^)x-\-(bc—ab)acy=abc{bc—ab) ; (3)

a'c'^x -\-(bc—aV)acy=a?bc''. (4)

Subtracting equation (3) from (4), and factoring, we have

{aW-\-a^c''—b^c'')x=abc{ab-\-ac—bcy

„., abc(ab-\-ac—be)
Whence x= —i—! -'

.

a'^b-'^aV—Vc^

Similarly, we may find the value of y by multiplying equation

(1) by ac, and (2) by bc-\-db, and subtracting.

(20) Transposing Vy in equation (2), multiplying by 3, ai;d

factoring, we have

(a2_i2)3y+Ca+J-fc)35x=(a4-2i)3(Z?)+?-''i!£
; (4)

a-\-b
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Separating equation (1) into its parts, we have

(a2—i2)5a;+(a2_J2)3^=(4a_/j)2aJ
; (l^

Subtracting equation (4) from (1) we have

(,5a^—5h'—3ab—3b'—3hc)a:=8a^b—2ab^—3a^-b—Gah''—^'^

Retucing and factoring,

^5a^-~8b^—3ab—3bc)x=—(5a^—8V—3ab—3bc).
a-\-b

Whence x=
a-\-b'

Substituting the value of x in equation (1) we have

i^(a2—i=')+3y(a2—J2)=8a=i—2ai' ; He^lucing,
a-\-b

3y(a2—i2)=3 a^b+3ab^=3ab(^a+b),

or, ^(a

—

b)=ab ;

ab
•• y= r.

a—b

QUESTIONS PRODXrclNG SIMULTANEOUS Eqli-
TIONS CONTAINING TWO UNffVr'IVN

QUANTITIES.

Article 159.

(4) Let x= number of slieep, and y= number o cow*

then 5x+7!/=lll,

7a;+5?/= 93.

Whence x=:4 and y=13.

(5) Let x= cost of 1 lb tea, and y= cost cf 1 ih ^•^ft^'

then 1x-\- 9y=520,

4x4-1 lj/=385.

Whence x^55, and y=15 cts.

(C) Lot .r= A's money, and y= B's,

then x-]-^0=!/—20,

3x-{-5y=2350.

Wlience a;=250, and y=320.

(7) Let Gx= A's money, and 5y= B's,

then 6j;-1-.5_v=9800
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aUo fix

—

x=by—y, or bx—%=0.
Whence x=800 and y=1000

;

.-. 6j;=4800 and 6j/=5000.

(8) Let a;= the numerator and y the denominator of the

fraction,

then ^±1=1, and ^=1=1
y+1 2 2,-1 3-

Whence a7=3, and y=^T.

(9) Let x= the first number and y= the second,

then -=?^+3,
3 4

Whence a;=24 and y=20.

(10) Let a;=: number of lbs, and y= cost per lb, then xy= cost

. . 30x— xy=\OQ, (I)

xy—22x=300. (2)

Adding equations (1) and (2) together we have

8j;=400, whence a;=50.

By substitution, the value of y is found =28.

(11) Let x= number of bushels of wheat, and y= bushels of

corn,

then 65a;=33y ; and b5x-\-Z3y= rent

;

also Gbx-\-i\y—140= rent.

.-. 65a;-[-41y—140=55a;+33y,

or 10x+8y=140.

Whence a;=:6 and y=10.

(12) Let X and y= the cubic feet which each discharges,

then X -.y : : 5X8 : 13X7;
.-. 40y=91a;; (1)

also y—07=561. (2)

Whence a;=440 and y=1001.

From (1) it is evident that y is greater than x, therefore

in (2) we write y—x.

(13) Let bx and 1x represent the first two numbers, and 'iy and

by the other two, then
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bx^Zy : nx-\-by : : 9 : 13;

.-. 65:r+39i/=63j;+452/, or 2a?=6!/; (1)

also 1x-\-by—{5x-\-'iy^=\&,

or 2x-f2!/=16. (2)

Whence x=Q and 2/=2, ••. 5x=30, 7x=42 ; and 2y=i

and 5j/=I0.

(14) Let x= number of apples, and y= number of pears,

then ^+^=30,
4 5

and 1 of ?+i oil, or ^+y =13.
2 4 3 5 8 ' 15

Whence x='Ti and y=60.

(15) Let x=: acres of tillable land, and y= acres of pasture,

then 200x-|-140y==24500 ; (1)

also X :
^-^

: : 28 : 9
;

2

.•. 9:c^l4a:— 14?/, or 5x=14j/. (2)

Whence a;=98, and y=35.

(16) Let x= digit in ten's place, and !/= digit in unit's place,

then 10x+y= the number, and \f)y-{-x= the number

when the digits are inverted,

then 10a;+y4-10i/+a;=121,

or lla;4-lli/=121 ; (1)

and lOx+y—(10^+x)=9,
or %x—9y=%. (2)

Dividing (1) by 11, and (2) by 9, and adding and subtracting

we find x=Q, and y=5.

ReiMark.— It may be asked why, in ohtaining equation (2), do we
Biibtract 10?/-|-:c instead of 10jr-[-?/, since we do not linow whicli is the

greater: The answer is, we can not tell wliich to subtract till we pro-

ceed to verify tlie resnlt, but if we had subtracted the wrong quantity,

the error would bo made linown in verifying the resnlt, by some quau-

Lty being' negative that ought to be positive. (See Art. 164.)

(17) Let 2x—6, Zx—6, and y be the numbers, which fulfilU

the first condition., The second condition gives

2j;— 1 :y+5 : : 7 : 11,

or 22a;— 1 1 =7!/+35 ; (1)

also 3a;—42 : y—36 ; 6 : 7,
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or 21x—294=6^—216. (2)

Whence a:=18, and y=50 ;

.•. the numbers are 30, 48, and 50

(18) Let X and z represent the days respectively in which a
and B can do it,

then - and _= parts wliich each can do in a day.
X z

Then i+i=l. (1)
X z \Q

Also in 4 days A and B do -+-, and in 36 days B does
X z

— parts of the work ;

z

. . _-f---f-—=1 (the whole work) ;

X z z

or f+15=l. (2)
X 2 »

Multiplying equation (1) by 4, and subtracting it froni (2)

we have —=- ; whence 0=48, and by substitution is
z 4

readily found =:24.

(19) First, 2 hrs 48 min. =2| hrs, and 4 hrs, 40 min. =4j h's.

Let X and z represent the hours respectively in which A and B

ccn drink it, then - and _= parts which each can drink in a/-

X z

2 2
hour ; and _-|— ^^ parts drank by both in 2 hours

X z

2f_14_ _._.. j_._,. u.. r, ._ .4i. ...

parts drank by B in 2- hours ;

z bz 5

4-14 2_i= = parts drank by A in 4- hours ;

X Zx ^ 3

.-. E+?+li=i (the whole)
; (1)

X z bz

?+l'*+?=l " (2).
X Zx z

By adding together the terms containing x, and those con-

taining z,



96 KEY TO PART SECOND,

?+^'=i; (3)

?2+?=--l. (4)
3x z

Bv multiplying (3) by y and subtracting (4) from it, we have

_=1 whence 2=6, and by substitution x is easily found =10.
z 3

(20) Let x^= numerator and y= denominator of 1'' fraction,

then f= 1" fraction, and ?—?=?ZZ:^= g'"' fraction.

y ^ y i>y

By adding the numerators together, and the denominators

together, we have

x-\-Sy—5x=y-\-5y,

or 2y=4x, or 2x=y ;

X 1
whence _=_= the first fraction,

y 2

and I—5=:j|,= the second fraction.

(21) In solving questions of this kind, it is convenient to de-

note the capacity by 1 ; it may, however, be denoted by

c, the object of the question being not to find either the

size of a crown or guinea, or the size (capacity) of the

purse, but the ratio of the size of a crown or guinea to

the size of the purse.

Let x= number of crowns and z= number of guineas,

then -:= part filled by 1 crown, and _= part filled by i

X z

guinea.

Also, i^+?=l, (1)
X z

and -+-=— (2)
X 2 63

Multiplying equation (1) by 5 and (2) by 6, and subtract-

ing, we find a;=21 ; then by substitution 2=63.

22) Let x= number of bushels of wheat, and y= number of

bushels of rye.

.*. 5x-\-2y= his money.

Observe tliat 7 bushels of rye will cost 21 shillings, and 6
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bushels of wheat 30 shillings. Then from the nature of the
question, we have the following equations •

30+3(a;+y—6)=5a;+3]/—6. (2)

Whence a:=9 and y=12.

SIMULTANEOUS EQUATIONS OP THE FIRST
DKSKEE, INVOLVING THREE OR MORE

UNKNOWN QUANTITIES.

Article 160.

C9) (3) from (2) gives l—l=h—c
;

U)
X y

n
Sum of (1) and (4) gives -=a-\-h—c.

X

Whence x=
a-\-h—c

(2) from (1) gives \—\=a—b
; (6)

y 2

o
Sum of (3) and (5) gives -^a—6+c.

y
Q

Whence y^:^
a—b-\-c'

(1) from (3) gives 1—i=c—a, (6)
z X

Q
Sum of (2) and (6) gives -=b-\-c—a.

z

Whence z=
b-\-c—a

( 10) Multiplying equation (1) by 3, and (2) by 2, to render tne

coefficients of _ alike, and subtracting the former from
X

the latter, we have

_LV-?=|. (4)
y 2 3

Multiplying equation (1) by 2 and adding the result to

(3) we have ——-=- (5)
y z Z-

9



W8 KEY TO PARTS ECOND,

Mulr'clying equation (5) by 11, and adding the result t«

(4"), we have — ==— ; whence y=12
y 3

(11) Multiplying equation (1) by 2, and subtracting (2j

from the result, we have ——__==

—

(4)
ix 3y 216

Multiplying equation (2) by 2, and subtracting (3) from

the result, we find —_-t-_=_ (5)
3x^2/ 18

Multiplying equation (4) by 3, and (6) by '3', and adding

and reducing, we find at=6 ; then by going back and sub-

stituting, we readily find the values of j/ and z.

(12) Adding the four equations together, and dividing by 2, we
find the value of x-^y-\-z-\-v. Then subtracting from this

each of the equations successively, and dividing by 2, we
get the values of x, y, .i, and 1;.

QUESTIONS PRODUCING SIMULTANEOUS EQUA-
TIONS CONTAINING THREE OB MOKE

UNKNOWN QUANTITIES.

irticle 161.

(1) Let X, y, and z represent the respective shares, then

a;+y+j=760, (1)

1+^—2=240, (2)

I/+Z—a;=360. (8)

Whence a;=200, 2/=300, and z=260.

(2) Let X, y, and z represent the numbers respectively, then

^+y+2=20

;

(1)

x-^y : y-\-z : : 4 : 5, or 5a;+5^=4y4-42
; (2)

y—x : z—X : : 2 : 3, or 3ij—3x=2:—2x. (3)

Whence a;=5, y=7, and 2=8.

(3) Let X, y, z, and v represent the numbers respectively, then

^+y+2=13, (1)

a:+y+«=15, (:2)

a;+2+i;=18, (3)

V+2+t)=23. (4^



E a U A T 1 O N S OF T H F, FIRST D E O E E E . OS

Adding the four equations together and dividing by 3, we have

x-\-y-\-z-\-v=22, from which, by subtracting

equations (4), (3;, (2), and (1) respectively, we find x==2,y=i,
z=1, and v^9.

(4^ Let x= digit in hundred's place, i/= digit in ten's place,

and z^ digit in unit's place, then 100x-\-10i/-\-z= the

number, and x-{-y-\-z=l6
; (1)

also x-\-y : !/+2 ^ : 3 : 33, or 35a;+3'3!/=3j/+3z
; (2)

and 100x-\-}Oy-\-z-]-198=l(!Oz-li-10y-\-x;

or 99x4-198=992. (3)

From these equations we readily find x=5, y=4, and z^7.

(5) Let x= number of votes for A and B, y= do. for A and

C, and z= do. for B and C ; then

a;-f-y-|-26=158, (1)

a;-l-2+30=132, (2)

y+z+28= 58. (3)

Whence ar=:102, y=30, and 2=0.

(6) If X, y, and z represent the three numbers, then

2^+ly+52=46, (1)

i^4-?i/+5^=3S, (2)

?^+Jy+B^=28-J. (3)

By clearing these equations effractions, the values of x, y, and

t are readily found by elimination by addition and subtraction.

(7) Let X, y, and 2 represent the three numbers, tuen

x->ry=a, (1)

x-\-z=b, (2)

y-\-z=c. (3)

Whence x, y, and 2 are readily found.

(8) Let X, y, z, and v represent the capacity of the respective

casks, then

x—y=—

,

(I)

y—z=y, (2)
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.=-

x==z-^v+15. (4)

Whence a;=140, ^=60, z=45, and t)=80.

(9) Let a;, y, and z, represent tlie number of guns, Boldieri

and sailors, respectively, then

fX22+10=2, (1)

y+z=5(a;4-y), (2)

Since the number slain in the engagement was one-fourth of

the survivors ; therefore, i(y-\-z) represents the slain, and i(y-\-z)

the survivors.

••• ^(y+^)+5=|xi3. (3)

Frcm these equations we readily iinda:=90,y^55 andz=670.

GENERALIZATION,

Article 163.

(8) Representing the parts by x—m, a;+jn, _, and mx, we
m

have

X—m-\-x-{-w,-\-—-\-mx=a

;

m

2x-\-—-\-mx=a

;

m
2mx-\-x-\-m^x=ma

;

xim^+2m+l)=x(m-\-iy=ma.

Whence x=. , from which the parts are easiW

found.

(9) Let x=^ distance he may ride, then

-= time employed in riding, and

-= time " " walking.

. "
I
^ - u "be

• ' rn -='
i whence x^

c b+c
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(10) Let x= the less number, then /)a;= the greater, since tha

quotient of the greater divided by the less is h.

.'. bx-\-x=:a, or (i-|-l)=a.

Whence x= = less, and bx=: = greater.
6+1 i+1 ^

(11) Let x= the number of beggars that received l> cts. each,

then n—x= the number that received c cts each.

. . bx-\-c{n—x)=a.

Whence a:=?=:^^ and n-x^'^^
b—

c

b—

c

(12) Let x= the greater part, and n—x= the less, then

n—X n—X

Whence x==
'''

, and n—x=
1+? 1+9

,13) Letar, t/, and 2 represent the days respectively in which

A, B, and C can perform the work.

Then, if A can do it in x days, he can do - part in one
X

day ; in like manner B can do - part, and C _ part in

V
one day.

W--



1 02 KEYTO PARTSECOND

Wlience x= , from whicli the shares of B and
ma-\-7ib-\-pc

C are easily found.

(15) IjCt x= cost of 1 lb of the mixture, then (a-{-h-\-^;)x=: cost

of the whole mixture.

But ma= cost of a lbs at m shillings per lb,

ni= " b " n " «

pc= " c " c " "

.•. (a-\-li-\-c)x^ma-\-Tib-\-pc.

, ,
,

,

7na-\-nh-\-pcW hence x^ ! L£__

a-{-b-\-c

(IG Instead of representing either of the quantities to be

found by a separate symbol, the simplest solution is ob-

tained by taking x to represent the number of miles per

hour the waterman goes when he rows with the current

;

then since he can row c miles with the current for d miles

against it, we have

c : d : : X : _= rate of sailing up stream.

And since the number of hours employed in sailing any
given distance, is equal to the whole number of miles

sailed, divided by the number of miles sailed in 1 hour
therefore,

_= number of hours in sailing down stream, and
X

u-——=—= number of hours in sailing up stream.
c dx " ^

: "LJr-=h, whence a:=2£±f!?,
X dx bd

and
dx ac-\-ad

c he

. ac-\-ad hd ^.
,

n-i-—;-;—=— = time down ;

bd (•+(/

. ac-l-ad he
a-r—r = = time up.

he c\d '
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It ia evident that the rate of the current will be half the

difference of the rates of sailing down and up ; that is

1 ( ac-\-ad ac-\-ad} __a(c^

—

d')

2 1 Id be S ~2bcd '

Lastly, the rate of rowing will be the difference between

the rate of sailing and the rate of the current ; that is,

ac-}-ad a(c''—d'') a(c-\-d)''

bd 2bcd
'

2bcd '

NEGATIVE SOLUTIONS.

Article 164.

Enunciations of questions 2, 3, 4, 5, and 6, so that the results

shall be true in an arithmetical sense.

2. What number must be svhtracted from the number 30, that

the remainder shall be 19 ? Ans. 11.

3. The difference of two numbers is 9, and their sum ,26 ; re-

quired the numbers. Ans. 17 and 8.

4. What number is that whose third subtracted from its lialf

leaves a remainder 15 ] Atis, 90.

5. A father's age is 40 years ; his son's age is 13 years ; how

many years since was the age of the father 4 times that of the

son ] A.ns. 4.

6. The triple of a certain number iticreased by 100, is equal to

4 times the number diminished by 200. Required the number.

Ans. 300.

Article 169.

(1) Here we find x=—-i.
m—n

l"". There will be a negajve solution when n is greater

than m. 2"^. The value of x will be infinite when m ia

equal to n (Art. 136). 3"'. When q is 0, and m is equal

to n, there will be an indeterminate solution ; that is, z

may have any value whatever.

(2) 1". The boats will meet half way between C and L,

when m is equal to n. 2"''. They will meet at C when m
is 0. 3"*. They will meet at L when n is 0. 4". 'Ihev
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will meet atove C when m is less than n, and the boat A
runs in an opposite direction from C to L. 5". They
will meet below L when m is greater than n, and the

boat B runs in an opposite direction from L to C. 6"".

They will never meet if m and n have different signs and

are equal to each other. 7"". They will sail together

when a is zero, and —m=n, or 7n=—n.

(.3) Let a;== the number, the

4

whence 2x-\-i=2x—7, or 11=0.

This result is absurd, therefore the question is absurd or im-

[cesible.

(4) Let x= A's age, then x—6= B's, and x—10= C's
;

.-. -+'^~'"=l(a—6)+l.
3 4 12

or 4a;-l-3a;—30=7a;—42+12.

0=0.

Hence x may have any value whatever, thus if A is 80 years of

age, B will be 24, and C 20.

(5) We shall find the same values for x and y from any two
of the equations, for example, from the 1'' and 2"'', 1 and
3"', 1" and 4", 2"'' and 3"', 2"'' and 4'*, or 3"' and 4'*. Hence
we may take either two of the equations and the other two
will be redundant.

(6) Prom the 1'' and 2"'' equations we readily find x=5 and

y=3. From the 1" and 3'-'',x=6|, and i/=2|. From the
1'' and 4"' x=—6 and y=8. Hence the equations can
not all be true at the same time.

EXAMPLES INVOLVIHG THE SECOND POWER Of
THE UNKHOWN QUANTITY.

Article 171.

(9) First divide both members by x".

(11) Let x= the number, then

4('?X-)=-X-X-, or x'='^-
^ 2 2 / 3 3 3 27-
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Multiplying both members by 27 and dividing by x', we find

r=27.

(12) Let x= the length and y= the breadth, then an/= the

number of square feet. From 1" supposition

(x+4)(y+5)=a:y+ll«. (1)

From the second supposition

(r+5)(y+4)=^i/+113. (2)

Performing the operations indicated, omitting xy on each

side, and reducing, we have

5a;+42/=96
;

4a;+6y=93.

Whence x=12 and y=:9.

INVOLUTION OR THE FORMATION
OF POWERS.

Note.— Most of the examplef? in the Formation of powers, and the

Extraction of roots, being performed by direct methods of operation,

which the attentive student will readily understand, it is not deemed

necessary to give these solutions liere. Those only will bo given which

present some peculiarity.

Article 172.

There is a theorem by means of which the cube of any bino-

mial may ha written directly, which the pupil will sometimes find

useful, viz. :

Theorem.— The cube of any hinomial is equal to the sum of the

r.vhes of the two terms, plus three times their product multiplied by

the binomial, if the second term is positive, or minus three times their

product multiplied by the binomial, if the second term is negative.

Thus,

(a—i)'=a'—3a=J+3ai2—i'=a'+(—i)'—3ai(a—J);
which proves the theorem.

This theorem gives at once the results in examples 25, 27, and

28. Observe that xy}-=l, e'^Xc"'=e'X ^-= 1.

X e*
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f29) Let a and a-l-l be two oonseoutive numbers

then (a+l)==«2-U2a4-] :

cliff."^2a+l=a+(a+n.

( 30) Let a— 1, «, and a-^-lfhe any three consecutive number* ;

then (a—l)-|-a-j-(a+l)=3a= their sum.

(a—1)3= o'—3u2-|-3a_l,

{ay = a?,

(a+l)3= fflS-l-Sa^+Sa+l,

Sum =3a' -l"6'2=3'2(a'+2) which is evidently divisi-

ble by 3a.

The theorem may be proved in a similar manner by assuming

i, a+1, and a-|-2 for the numbers.

EXTEACTION OF THE SQUARE ROOT
OF POLYNOMIALS.

Article 183.

(13) The terms arranged with reference to x, give

5 25 5

ri7)
1

513

2 8 16 128

2-^-
2

4

^—x^—-
4

~4 8" 64

2—a;2—

_

x'

4 16 8 64

, &c.

8 ' 16 64 2,56

gT 64 256"
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A more elegant metliod of extracting the square root of 1

—

x'',

18 by means of Indeterminate coefficients, Art. 317; or, by the

Binomial theorem, Art. 321.

(18) The operations in this example are similar to those in the

preceding.

EXTKACTION OP THE CUBE EOOT OF
POLYNOMIALS.

Article 191.

(6) In solving this example let a-\-l be considered a single

quantity. It may, for example, be represented by a single

letter as h.
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The square root of x*—2x'-{-3——+— is now readily found to
x' if

be a:^—1+i
x^'

(12) The terms arranged with reference to the powers ot a,

give a8—6a<-|-15a=—20+——^+1 The square rout
a' a* a'

of this, found as in the preceding example, is a'—3a

3 1+-—— ; and the cube root of this, found by the rule in
a a^

Art. 191, is a—_.
a

It is proper to remark that both the preceding examples may
be solved without using fractions in the operation, by multiplying

all the terms of the polynomial in example 11, by afl, and writing

i' beneath it, and after extracting the fourth root of both terms,

dividing by x''. We should thus find x^—2x^-\-Zx*—2x'-|-l for

the first square root of the numerator, and x*—x'-{-l for the sec-

ond. Similarly, in example 12, we must multiply all the terms

by a'. It is recommended to the pupil to solve these examples

by both methods.

RADICALS.

Note.— As most of the examples in Radicals are performed by direct

methods of operation which the careful student can scarcely fail to ap-

ply properly, it is not deemed necessary to present all their solutious.

BEDDCTIOJI OF KADIOALS.

In the reduction of fractional radicals of the second degree

there is a principle with which it is well pupils should be ac-

quainted, as it both facilitates and simplifies the operations. This

principle is, that if a numler contains a factor thai is a perfect

square, the numher may be made a perfect square ly multiplying il

by the other factor. Thus, if the denominator of a fraction is a'J

it may be made a square by multiplying it by b. For example,

\72 M36X2 M36X2= M36X4 6X2 12^



RADICALS. 109

If the denominator contains no factor that is a perfect square,

't can only be rendered a perfect square by multiplying both

terms by itself. Thus,

Article 199.

(3) s/(.x^^y''){x+y)=^(,x-\-y){x—i/){x+ij}={x+y)^x—y.

Article 200.

In order to separate a quantity into two factors, one of which

Is a perfect power of any given degree, it is necessary to ascer-

tain if the quantity contains a numerical factor that is a perfect

power of that degree. To do this we must see if the quantity ia

divisible by any of the perfect. powers of that degree. Thus, if

the radical is of the third degree the perfect powers to be tried

as divisors are 8, 27, 64, 125, 216, 343, 512, 729, &c. If the rad-

cal is of the fourth degree, the divisors are 16, 81, 256, 625, &c.

If the radical is of the fifth degree, the divisors are 32=2'.

243=3', 1024=4', and so on.

(41 Vi=l'AX|==V|X4=|V4;

3/1=5/75^=15/6; V1=V3|bX 36=^^36;

Vi^=Vi^X|=VTkX45=iV45.

^'^ fHi'^i- ^^^X2X33=y2X34V54.

(7) s/64=i/32X2=2V2; V'729a«=V243o'X3a=3aV3a;

« /!='' /ix-=' /ix2'=-V2==-V32 ;

Aj2 N2 2' N2« 2^ 2^
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or thus » /?=! /?X -=\/\x3X4^=-i'768.

The first method has the advantage of giving the reEuJt in the

moat simple form.

ADEITIOIl AND SUBTRACTION OF RADICALS.

Article 204.

(14) 2^1=2V|X2=V2; 8V^',=8^g'4X2=2V2.

.-. Sum =3^2.

(17) 3 /?= /9X?=V6; 7 /?2=7 /^><^X?=7 /Ax6
' Ms \l 3 ^ MSO V25X2 2 N 100

=fJV6 ; —V54=—V9X6=—3V6 ;

••• 's/6+fW6-3V6=(l+f-J-3)V6=JoV6-

(18) -Wl2=—iV4X3=—V3; 4V27=4j9X3=12V3;

-V/B=-2JTVX3=-iV3.
.. 2^3—v'34-12Vl—iV3=(2—1+12—i)V3

(20) Vl6=2, V81=l^27X3=3s/3, —«/—S12=—V—8'

=8, Vl92=5/64X3=4V3, —7V9=—7V3;
. . 2+32/5+8+4^3—7,5/3=10.

(21) 8(3)^=8JpO=4j"3;^X 12^=1^4X3=73,

-4 X27^=—4V9X3=-4V3, -2(-^%)^=-2jJ^i

••• 4V"3+V3-4v^—1J3=(4+1—4-pV3=W3

23) ^J=^^^xai=^J^;
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^c ^c ^c

-Jab4-.^^Jab=—Jab.
c 2c

^
2c

MULTIPLICATION AND DIVISION OF RADICAL*

Article 205.

(9) V3=Va'. 2/2=5/2=; V3'XV2'=V3'X2^=V108.

(10) lfb='ljh\ i/a='y'^; 3'5yFx4>V"«'=12'V^<.

(11) V2='V2"S %/'5='yr, V5"='V5'; ^

'V2'X'V3'X'V5'='V2'X3^X6'='V64X81X126

='V648000.

(12) V2Xi;/3=V23XV3'=^23X3=='5y2=X3^

N2 N3 \/25^V3^ N2'X3''

Or thus, V2X V3X VlX^I=V2=X VjX V3X Vi
= V2, Since 22X^=2, and 3X1=1.

(13) y^'—^'^x*, 3V^=v^==v^2

(18) V^-^-^/2=V72-^;^F=V9='^^/9=V3^

(19) 45/9-H2V3=4^9=-^28/35=2V3".

'20) 20^200^4V2"=20^200-^4«/8=5«/25=5V5.

(21) y'f2-^y3=y72-r-x/'^=%/'8=J^8=y2.

(22) ?/4-^^5y6=22/|=2=/|X|=23/2'7X18=fVl8.
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\ 3 9 \'21 3

<-' ^H&' •^/S-^/rC.xH;

(24) yy=yix2=y2.
V2+3J-i=V2+3Vl X2=^2+1 J'2=^y2

(25) 3+^5
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(33-) 2^8=4^2, ^72=6^2, 5^20=10^2;

(2J8+3V5—7V2)=3V5—Sv'l ;

(V72—5^20—2V2)=4V2—1075"

12710—24

—150+30^10

42710—174. Ans.

Article 206.

(4) Multiply both terms by 4? or 16.

(5, ?=^2^«=^^x!±V2_4+V2-_ -
3—272 3—272 3+272 9—8

73+72_73+72 73+72^5+276^g_^3 ,6.

73—72 73—72 73+72 3—2

„^ ^&_VJ±i^?+7|^J+37C5^3^^
' 2—73 2—73 2+73 4—3

rs^ l=^=l=4v?:r4='=^=2-75:
^ -* 3+75 3+75 3—75 9-0

,a^
37-5-272 27-5+7T8 18+57l^_,^, ,^,

^ ^ 27"6-7l-8^275+7l8~ 20-18 ^''^

(10) Multiply both terms by 72+73+75", and the fraction

7'2+73+75
becomes =

; then multiply both terms b*
276 _ _ _

76 and it becomes
27^+372+730

^
12

_3+47'3 ^7-6+72+7-5
^ ^ 76+72-75 76+72+75

Ji+473X7_6±_7E+7a)^ ^ ^ 3_ ^^,
j^

3+473 ^ ^^ ^^



!I11 KEY TO PART SECOND.

1 X—J x'^ 1 X—Jx-—

1

,-5 -,

(121 y ^ — ^ =x

—

^x'—];
x-^^x'—\ x—Jx'^—l a;=—(a;2_l)

—4= x-^^^^S=^-±-f,^i-+v^^.
x—Jx-'—lx-\-Jx''—\ x-~{x^—\)

Sum =2j:. Ans.

(13) Multiply both terms by ,J {x-\-a)-\-J {x—a) and the frao

tion becomes fa+'^)+V(^^-«^)+(a=-^)
{x-{-a)—{x—a)

(14) m;l±^l£=l^^^+}M^t:^-x^+j-^^

Sum ^2.r-.

, „ l+s/2 2+V2 4+3^2

fl8)
V20+n/]2.^ V5+J3_16+2V60

=8+2^15=15.745966+.

IMAGINARY, OR IMPOSSIBLE QUANTITIES.

Article 210.
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^4) (2V'=3)X(3V^)=(2v'"3V—X)X(3v'^>/^)
=—676".

—l+V—

3

—1—V—

3

1—V^ 1+V^
—V^3-3 +V"^^(-3)

—2—2V^^ —2+2^^
—1+ V^^ —1— v^^
2+27'=3 2—27"^

—2V^—

2

(—3) +2^^—2(—3)

2 4-6=8
;

2 +6=8

;

2'=8, and|=l. Ans. 1=1- ^"^•

(6) 6V=3=6V3j"^; 2j=4=2v'4v'^=W^^;

6737-1-^-4^-1=—-5^ =V3.^ ^ 47—1 2^

„, i+V~i ., 1+7^1 1+27^-1 27-=! —
(^^ i_7=i><i+7-r" i-(-i) - 2

->/-^-

(8) (a;-l-a7^T)X(x—a7"^)=x3—a=(—l)=a;2+a2 .

(9) Multiply the quantities together.

MULTIPLICATION AND DIVISION OF QUANTITIEI
WITH FEACTIONAL EXPONENTS.

Article 213.

(4) J-\-ahi+bi (5) x^y+y^

a^—b^ x*—y~^

—a^b^—ah^—b —x^y^—y^

a—b Ans. x^y—y^
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(6) (a-t-t)'"X(a—J)'"=[(a+i)(3—'')]'"=(«'—*')" i

(7^ Observe that ?-!=! ;
l_?=3^^_2m_

3 4 12 m ji rare

Q8) a^—bi Joi—ji

ahi—ah^.

a4ji—ji

ah'^—bi.

(9) a—52 lai^-a^ji-l-aift+jt

fl 1 L S—„ b^—a^b—a^h^—b''

—a*i^

—

a'^b—a^b^—b\

POWEKS AND KOOTS OF QUANTITIES W I T

J

FKACTIONAL EXPONENTS.

Article 215.

(5) ah^'+a'^x o»=l, x»=l, (Art. 82).

a^x '-\-a ^x

a^x-'-lf-aOx"

+aOx<'+a~^x'

Jx~^-\-2 +a"3j;5

a^a;-'+a"^j;

ax ^-\-'2aK-c~'-\-a 'x

+ a^x '+2a"k+ a^x '-\-2a"h+a-^x>
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(,6) [3(5)^]^=r3^X5^=3^X5^=(33X5)^=(135)i

^7a\a)^ I
i^ {la^^a^ ^^7^a(a)^_7^a?

^9(3436^)^) (s^VV^)^) 3(7^6^) 36*

(.8) 5a;'—4x(5ca;)^+4c Is^a.^—2ci Ans.

5a;'

2(6^)—2c^l—4a;(5ea:)g+4g

—ix{5cxy-\-4c.

(9) Separating the third term into its parts, and arranging the

terms according to the ascending powers of a, we have

1 3 ^
, 41 3a^

I

.

1—-a +._a—

—

-\-a-

2 16 2

3ai
1——+a.= sq. root

4

2-JA
4
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(6) Square both sides, omit x on each side, divide both sides

by 2a, transpose ^x, or _ and square. The answer is

either ^ or ^ ' , the two being equal to each
4 4

other.

(,7) Square both sides, transpose 2x—3a-\-2x, divide by 2 and

square again. •

(S) Square both sides and transpose 13; square again and

transpose 7; square again and transpose 3; whence ijx=l
and x=\.

(9) Multiply both sides by the first term, transpose 2-\-x and

square both sides.

(10) Multiply both sides by ^x, transpose ^a, then square

both sides, and omit x^ on each side.

(11) Transpose the second term to the left member and square

both sides, omit x on each side, transpose the known
quantities to the left side and square again.

(12) aJx-\-h^x—c^x=d,or (ffl-j-i

—

c)Jx=d;
d'

whence ^x= , and
{a-\-b—c) (o+J—c)2'

(13) Multiply both sides by x^x to clear the equation of frac-

tions, then divide by x and we have (1

—

a)x=l. The
equation may also be cleared of fractions by multiplying

both sides by x.

(14) Square both sides, omit a^ on each side, then divide by x
and square again.

f 15) Since x—4=(^j:-|-2)(;^a;—2) the first member becomes

^x—2 ; then by transposing we have 6=5i.^x, or

ll^x=12, whence x=l^i.

'16) Since x—a=(^x-\-^a){Jx—^a) the first member be-

comes Jx—^a ; then by clearing of fractions and

'educing we find Jx=iij a, whence a;=16a.
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(17) Since 3a;—l=(^3i-|-l)(^3!r— 1), the first member be-

comes ^3x— 1 ; then by clearing of fractions, reducing

and squaring, a; is found =3.

(18) J4a+x=2^b+a:—jx,

4a-\-x =46-|-4j;—4^bx-\-x^-\-x, by squaring,

^bx-\-x^=(b—a)-\-x, by transposing and reducing,

hx-\-x'=ib—ay+2{b—a')x-{-x^-, by squaring,

(2a

—

b)x=(b—ay, by transposing,

^^(b-ay
2a—b

'

(19) i±^+4
'~=\i-p~,.\ a-\-x \ a—X \ a^—x^

H=i+N^-^=+^r\/«^=^= by squaring;

But 2 /_^= /_i^;

.". + =0, whence x= ^ '' \
a-\-x a—X b—

c

(20) Multiplyingboth terms of the first member by the numerator

and then clearing of fractions and transposing, we have

2Jx''-\-ax^a (c— 1)

—

2x,

4x^-{-iax=a~(c— 1)^

—

4ax(c— l)-]-4:X^ by squaring,

4acx=a^(c— 1)^ by reducing and transposing
;

a(c—1)2

4c

V2

Squaring both sides, and observing that Ljx-{-3 mull*

plied by .hjx—3 produces Jx—9, we have

^"^+3—2Jx—9+Jx—3=2 Jx.

Reducing, and omitting 2jx on each side, we have.

—2jx—9=0, and 4(x—9)=0 by squaring,

whence x=9.



120 KEY TO PART SECOND

(22) Square both members, omit _ on each side, square again
a?

and omit _ on both sides ; then multiply both members
a;''

by X-, clear the equation of fractions and the value of x

is readily found.

23) Square both members, omit equal quantities on each side,

place all the terms not under the radical on the right side

and divide by 2, and we have

V Kl—«')'+2x(l+3a2)+(l—aV}=Ca2_i)_^ ;

square both sides, and we have

(l_a2)'+2a;(l+3a=)+(l—a>==(a2—1)2—2a;(a2—l)+a;2.
The square of 1

—

a^ is the same as the square of a?— 1, omit-

t'ng these and x^ on each side, and dividing by x and transposing

we have a^x^'&a? ;

whence a;==8.

EXAMPLES IN INEQUALITIES.

Note. The subject of inequalities, though interesting and highly

important in ilself, is not much used in the subsequent parts of Algebra

The last eight examples, that is, from the 10th to the close, may be re-

garded as so many independent algebraic theorems, the study of w

mav be omitted by all except the higher class of students.

Article 223.

) Squaring both quantities, subtracting 19 from each, an^

dividing by 2, we have

^7(3>, or <1+3V6 ;

70>, or <^l-|-6^6-(-54, by squaring ;

15^, or <[6;,y6, by subtracting 55 from each member

5]>, or'<^2^6, by dividing by 3 ;

25]>24, by squaring

;

.
hence ^'5+^1'* ^^ S''^^*®'' ''^'"^ ^^3+3^2.

(8) Multiplying both members of the first comparison by 12,

to clear it of fractions, and reducing, wc get x<iS>
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Treating the second comparison in the same manner, wn fina

r^4 ; hence if a; is a whole number and is greater than 4 and
less than 6, it must be 6.

(9) 2x+7 not >19, 3a;—5 not <13,
or2j:not>I2, 3a; not <18,

X not >6. X not <^6.

Hence if x is neither less nor greater than 6, it must be 6.

(10) In example 6, page 175 of the Algebra, it is shown that

Let a=n, and i=l, then by substitution

?i2+l>2n,

n^—^-{-l'^n, by subtracting n from each side

n^-\-11^n{n-\-l) by multiplying both aides by n-f-1, or

re'-j-l^w^+K.

(11) Referring again to example 6 we have

—-\-—~^2, by dividing by ab.
ab ab

_+-']>2, by reducing.
b a

(12) If a;>7/ then ^x'^^y,ani -J^l>'Jy'K'Jy>or y,

•J^y>y'

2V^>22/;
.-. (Art. 222) —2y> —2jxy, add x-\-y to each member

then X—y^x—2jxy-\-y,

or x—y'yijx—^y)'.

(13) Referring again to example 6, we have

a^-|-i^]>2ai, subtract ab from each member

;

a^—ai-j-i^^ ab, multiply each side by a-\-b, we iiave

a? -\-¥~^a''b-\-ab- , divide each side by a^i',

a'
I

/;' ^.^ aV} , aV , .—+—>—+— , or reducing,

h'^a^^b^a
11



122 KEY TO PAR'i SECOND

04) Fi'om question (j, we have

also a2_|_c2^2(zc,

una C^-(-'3^^26c,

from whir.li, by adding together the corresponding mem-
bers, and dividing each member by 2, we have

(!5; —II^>, or <^
"^

; multiply both members by a-{-h,
a^-\-li'' a-\-b

a^+alA\-a}b+¥^^
or <a2+i2 ; multiply both member •

by a'+h',

a''J^ab'+aH>+h''y, or <a''+2a=&2_]_j4 .

Subtracting a'^-\-h'' from each member we have

a¥-]-a^b'^, or <[2a-6^ ; divide by ab,

h^+a^ >, or <2aJ.

But it has already been proved in example 6 that a^-\-b^

is ^2ai, wljen a is not equal to b ; therefore,

a'+b^^a^+l'^

Or thus, a^-{-b^^2ah, multiply both sides by ab,

a'6-|-a6^>2a^i^ add a^-{-¥ to each member,

a''+a'h-\-a¥+b'ya'+2aVy'+b-' ;

dividing each member by a-{-h, and then by a^-|-&', we haie

" "^ ]>'' ~r
, which establishes the proposition.

(16) a:2=a=+i^ and 2/2=c=-fd- ;

x'y2=(a2+i2)(c2+d2)=aV+a'(Z-'+i'c=+i2d^

(ac+M)2=. . . . a=c2+2aterf+/P(/2,

xy—{ac-\-bdy=aW—2abcd+b^'c^=(ad—bcy,

but ai^ji-—(ac;-|-6d)2=Ja;j/-|-(ac-|-6d)J Ji^

—

iac-\-bd)\ j

divide each member by xy-\-{ac-\-bd), and we have

xy—{ac+bd)= *", ~
/, -.

j^^-|-ac-|-«o

But tlie second member of this equation is necessarily positive

since the numerator is a square and the denominator positive

hence the first member is positive ; that is, xi/'^ac-\-bd.
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(17) a^^pa^— <J>—c)', since (i—c)^ is neressarily positive,

]>(a4-i

—

c){a-\-c—li) by factoring
;

Xa-[-;,_c)(ft+c—a; ;

c'>c2—(.a—i)2,

>(o+c—i)(ft+c—a).
Multiplying together the corresponding members of these

inequalities, a''b^c'^'^{a-\-h—cy{a-{-c—hyQ)-\-c—ay
;

extracting the square root of both members we have

ahc^{a-\-h—c) {a-\-c
—V) {b-\-c—a)

.

EQUATIONS OF THE SECOND DEGREE.

INCOMPLETE EQUATIONS.

Article 228.

(12) Multiply both members by ,Ja^-{-x^, transpose o'-f-a:' and

square again.

(13) Multiply both members by Ix, transpose ab and then

square each member.

(14) Multiply both members oy the product of the denomina-

tors and reduce.

(15) Multiplying both members by the denominator of ti>» first

transposing and factoring, we have

a3(l_6)2 =(i-|-l)2(ffi3—j;2), by squaring,

(b-\-iyx'=4a^b, by transposing and reducing
;

,-. x'=: , and x=z±:—y-^
(t+l)2 b+1

SUESTIOKS PRODUCING INCOMPLETE IVAi >»»
OF THE SECOND DEGKEE

Article 229.

(2) Let x= the number, then

a;'—17=130—2x^

Whence x=T.
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(3) Let 1=: the number, then

(10—x)x=10(a;—6|).

Whence x=8.

(4) Let x=: tlie number, then

Whence x=6.

(5) To avoid fractions let 9x= the greater, then f of 9j[r=2«

and 9x—2x=7x, will represent the less ;

.-. (9.r)2—(7x)2, or 81x2—49x2=128.

Whence x=2, . . 9x=18, and 7x=14.

(7) Let x= the greater number, then 14—x^ the less ;

then -^— : Ll=? : : 16 : 9 ;

14—X X

whence = -: ; clearing of fractions
14—X X

9x^=16(14

—

xy ; extracting the square root

3x =4(14—x) ;

Whence x =8, and 14—x^6.

(8) Let x= the number, then

(20+x)(20—x)=319,

Whence x=9.

(9) Let x= the greater, then Jl-= the less, and
X

_^126_^ X _ x^ _^\
' ~x 12ti~T2G^ 2'

Wlionce x2=441 ;
.-. x=21 and i??=6.

X

10) Let x= one of the numbers, then "=: the other, and
X

. f yX x'

p

Whence x=sjpq\ 1= ^ = P,
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(11) Let a;= one of the numbers, then its square is x^, and the

square of the other is 370

—

x^.

.-. x^—(370—a:2)=208.

Whence x=n, and 370—x==370—289=81.

•. the other =J81=9.

(1-) Let a;= one of the numbers, then its square =x', and

the square of the other is c

—

x'

;

.-. x^—(c

—

x'')=d.

2x'=c-\-d,

4x-—2{c-]-d),

2x= JUic+d)

x=l^2{c+d)

^c—x-'=Jc—l(ic-\-d)=J}Xc—d}=y2(,c—d).

6x
(13) Let .r= the sum, then — = interest for 1 year, and

100

1 6x 6x 1
_ of —=—= interest for 3 months, or _ of a vear
4 100 400 4

-. rX—-=720, or -1=720;
400 400

5x^=720X400,

a;2= 144X400,

X =12 X20=240.

r]4) Let x= the first, then _= the second, and _^ the third
X X

(17) Let a;=: number of drawers, tlien xy,x=x^ Ihe number
of divisions, and a;^X4x=4x'^5324.

Wheice x3=1331, and x=U.
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(18) The solution of this question involves a knowledge of

two elementary principles of Natural Philosophy, with

which the student should be rendered familiar by simple

illustrations.

1st. In uniform motion, the space divided hy the time is equal to the

velocity or rale of moving.

2nd. In uniform motion, tlie space divided hy the velocity is equal to

the time.

Thus, if a man travels 80 miles in 4 days, his rate of traveling

(velocity) is 20 miles per day. Or, if a man travels 100 miles at

ihe rate of 20 miles a day, the time of traveling is 5 days.

Let x= the distance B traveled, then

a;+18= " A "

Then since the distance traveled, divided by the number
of days, gives the number of miles traveled in one day,

or the rate of traveling, we have

— , or —^= A's rate of traveling, and
15] 63

^±1!= B's rate
28

But tne distance traveled, divided by the rate of traveling,

gives the time, therefore

(i-t-lS)-^ —=

—

^
~^—i^ time A traveled, and

^ ^ ^ 63 41

^_^x+\S_ 28x _ .. jg

28 a:+18

But since they both traveled the same time we have

63(x+]8)_ 28j;

~4x ^18'
Divide each side by 7 to reduce to lower terms,

9(x4-18)_ Ax

ix x-\-\S'

Multiplying by ix and a;-|-18, and indicating the opera-

tions, we have

o(a:+18)'=16x'
;

Extracting t.ie square root of both members,

Z{x-\-\S)=ix.

Whence a;=54, and ,r+18=72 ;

and 54+72=120, the required distance.
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f 19) The solution of this question involves principles analogous

to the preceding.

Let x= the number of days, then x—4= days A workedi

and X—7= days B worked.

Also = A's daily wages, and = B's daily wages.
x—i X—

7

If B had played only 4 days he would have worked x—

4

days, and would have received

j
1 (x—4) shilling

If A had played 7 days he would have worked x—7 days,

and would have received

I
) {x—7) shillings. But by the question each

\ X—4 /

would have received the same e'_m, therefore,

Multiplying each side by x—4 and x— 7 to clear the equa-

tion of fractions, and indicating the mult'plication, we have

75(x—7)==48(a;—4)2 ;

dividing by 3 to reduce it to lower terms

25(x—7)2=1 6(a;—4)2;

e.xtraoting the square root of both members,

5(x—7)=4(x—4).

Whence a;=19.

2C^ Let -^ the part of the wine drawn each time, then _ of
X X

1 (the whole) is _= the part drawn at tlie 1'' draught, and
X

\ X \
1—-== = the part remaining after the 1" draught.

X X

x—\ 1 pj. a;—l_a;(a;—l)_(x—l)__(,r— l)(a:— 1)XXX a;2 a;2 a;'

_(^2lll=part left after 2"'' draught.
a;2

(x—\y_\^^ {,x—\y^x{x—\y_{x—\yji^x-~.)(x-\)'
x^ X i^ a;3 ^3 ^

_(^-—!)'_
p^^j jgcj. ^(.(.gj. gj^ draught.
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(a;_l)3^1 ^(x—TL)^_x(x—\y_(x—iy^iia:—l){x—l)'

Sx-iy_
part left after 4"" draught

But by the question there were 81 gallons of wine left

after the 4"" draught, or ^Vs of thp quantity at the begin-

ning,

{x—iy_ 81

x'^) 256'

^'_, by extracting the 4'* root.
a; 4

Whence 4x—4^3a;, or x=4, and _=_=
a; 4

the part of the wine drawn at each draught.

I of 256=:64 gallons drawn at 1" draught

;

256—64=192, and { of 192=48 gallons at 2"'' draught

;

192—48=144, and | of 144=36 gallons at 3"' draught

;

144-36=108, and | of 108=27 gallons at 4* draught.

Another solution.

Let x=: the number of gallons of wine drawn at 1"

draught, and let 256=a for the sake of simplicity.

Then _= the part of the whole wine drawn at 1" draught
a

and 1—_= =: part left.
a a

- of =— r= part drawn at 2"'' draught,
a a a^

a—X x(a—x) a{a—x)—x{a—x) (a

—

x)(a—x)
and

a

_{a—xy_
part left after 2'"' draught.

a'

By proceeding as in the previous solution, we find

^ i-= part of the whole wine left after the 4" draujhi.
a"

(a—a;)'"_81

~a* 256

'

!:=_, wnence x=_a=64 from which the other draunhts
a 4 . 4

are easilv found.
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COMPLETE EQUATIONS OF THE SECOND DEGREE

Article 231.

(31) Multiplying by x and transposing, wo have

4
a;'

—

—=x=— 1 ;

V3
4 4 4 1

a;'

—

—=3:-\--^=— l-\-^=i-, by completing the square

V3
2 1

2 1 3 _ 11 —

(32) Multiplying both terms of the fractions in the, left mem-
ber by X, we have

x-)-l_|_x-|-l__—^ . [miiji plying ijoth terms again by a;'—1,
x^— 1 X— 1 4

x''-\-l-\-x^-\-2x-\-l=^^x-— ^^ ; transposing and reducing

Whence x^3, or —|.

(35) Transposing and dividing by c, we have

a:^—_a;=— , completing the square

a;2— _a;-(-"=_— —=-r ; whence
C C C

a , b adzb
X — _=zfc- ; or x=^i^.

(36) Transposing ah and completing the square, we ;iave

4 4 4

Whence x=-J—dz =a or J.

2 2

(37) Dividing by a—b, transposing and completing the square.
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^5_ a+/;,^, {a-\-hy- _a'—Sat+Q/;'

o^ 4(a—i)2 4(a—i)2~"

Whence a; ==-- ^t—

±

=1, or "V
2(a—i) 2(ffl—i) a—i'

(38) Transposing np, dividing by mq and completing the square

we have .2_"'^-^?^^("''i—W)'_{mn+rqy
^

mq 4m''q' 4m'q^

Whence x ^ ^nn-pq^mn+pg^n^ ^^ _p
2mq 2mq q ni

(39) Observing that ar' is the same as 1, clearing of fractions
X

by multiplying by ax, and completing the square, we have

, I
a'c^ a-c^—4ai

a:-'

—

acxA- =
4 4'

Whence ^<^^±AS^'^f=^

(40) I'irst, L
—1 —1 1 1 1 1 '

(a6=) ^-\-{a?h) 2 _L-+—!— —+--
{aVY ia%y ah ah'^

multiplying both terms of this fraction by ab, it becomes

ah
; the equation then becomes

a^+i20-71^

—(a*—i^)x=it 1 '

a^+i^ a^+iJ

Multiplying ooth members of this equation by a'-j-i'f it

becomes

a;'—(a

—

b)x=ab.

Whence x^a, or —b

(41) Dividing both sides jy --ac, transposing, and completing

the square, we have

^^,_ ad—bc^^{a,l—bcy_(ad+hcy

ac Aa^c' 4a-c^

Whence x=''±±±^!i±^=i or -*.
;2(io 2ac c «
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(42) Square both members, and then multiply both sides by

a;-f-12.

(43') Square both members, omit the terms wliich destroy each

other, transpose a, and square again; the equation will

then be free from radicals, and the value of j. is easily

found.

(44 Multiplying both members first by i-\-Jx and then by

Jx, we have

^4i;2-l-2^.r=16—^x, or, since ^4x^=2x

4x=2o6

—

dtix-{-9x''.

Whence x=:4, or ^.

The first value verifies the equation when ^x is taken plus,

and the second when it is taken minus.

(45) DividincT each side by the square root of x, and observing

that ^x-=x, we have

X—i=Jx, or

x^—4j;-|-4=x, by squaring.

Whence x''—5x=—4, and a;=:4 or 1.

The first value verifies the equation when ^x is taken posi

lively, and the second when it is taken negatively

(46) Squaring both sides we have

x-\-a-\-x-{-b—2J [x''-\-{a-\-b)x-\-ah]=2x
;

omitting 2x on each side, transposing a-\-h and squaring

again, we have 4x''-\-i{a-\-b)x-\-4ah={a-]-by ; from which

by transposing and reducing, we find

x^+(a+b)x=^
4

Whence x^-\-(a-\-b)x-\-i—!—i-=^ -'-''- ' ^ L
4 4

2 2
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(47) Transposing the second term, squaring, and omitting
—2alcx on each side, we have

(x^->[-c^)ahi=(^a^-\-h^)cx
; transposing and dividing bv

ab

a/j 4a^0^ 4,a^b^ '

_^ _ (a^-\-b^)c
_^

(a-—b')c_ac ^^ be

2ab iab b' a'

Another solution :

Let Jx=z, tlien x^z'' ; transposing —cjab, dividing

by ^ah, and substituting 2' for x, and z for ^x, we have

{a—b)^li (a—hyc (a—bye (_a+hyc

^ ~ Jab 'i'^^
"" 4ai '^'^~

4ab
'

(a-b)J^ {a+byji
Whence z= =r-± =r-

2jab 2jab

^2nJ~e joe —•2bJ~i ihc

2j'ab~^b'°' 2V^""^«'
. Jx=J"f, or /^, and x=l=, or ^1

M w \ a h a'

v48) ]\Iultiplying both sides by Ja-{-x, we have

5

J a'—^-=——X, by transposing

„3 ~3 49a' 14n: , , ,

a

—

x'=: —— x-\-x^, by sqiiannsf

a;^—yr=—_-_, by reducing.

Whence x='^.% or ??-

6 ft'
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tROBrEMS PRODUCING COMPLETE EQUATIONS
OF THE SECOND DEGREE

Article 233.

(5) Let x= one of tlie numbers, then 20

—

x= the other, and

x{W—x)=ZQ.

Whence x^2 or 1», therefore 20—x^l8 or 2.

(6^ Let a;:= one part, then 15—x^= the other, and

x{\f>—x) : x''-\-{\b—xy : : 2 : 5 ;

.•. 4i-—60x4-460=75a;—5x^,

reducing x-— 15a:=—50.

Whence x=10 or 5, and 15—:c=5 or 10.

(7) Let x= the number, then

k(]0—x)=21.

Whence x=7 or 3.

(,8) Let x= the less part, then 24

—

x= the greater, and

x(24—x")=35(34

—

x—x), reducing

x2—94x=—840.

Whence x=10 or 84, the'first of which is evidently only

admissible ; therefore, the parts are 10 and 24—10=14.

(9) Denoting the square roots of the parts by x, and 26—x,

we have x=+(26—x)2=346,

reducing x'—26x=—165.

Whence x=lo or 'l, and 26—x=ll or 15.

(10) Let x= the square loot of the number, then x'=: the

number, and

x'+x=132.

Whence x==l], or — 12, and x^=121, or 144.

The last number is the answer to the question " What number

Jiminished by its square root gives 132 !"

(11) Let x= the square root of the numler, then x'=: t'le

number, and x^—x=48f

.

Whence x=7l, or —6\, and x'=.56j or 42;|-.
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The last number is the answer to the question " What numbei

added to its square root gives 48| ''

(12 Let 3c= one of the numbers, then 41

—

x=: tlie other, and

a;2-|-(4i_a;)2=901.

Whence x=lb, or 26 ; and 41

—

x=^2B, or 15.

1,13) Let xz= the less number, then a;-[-8= the greater, and

a;2+Ca;+8)==544.

Whence a;=12, or —20 ; and a;-|-8=20, or —12 ;

hence the two numbers are 12 and 20.

(14) Let x= the first cost, then x= per cent, of gain, and

,, X x'
xy,—= = gam.

100 100

.-. a7+-^=2400.
100

Whence a;=20.

(15) Let x= the number of miles B traveled per hour, then

x-\-\= the number of miles A traveled per hour, thv>n,

39 39
also, and —= the hours respectively which A Hnd

x+i X

B traveled. --

• 39 . ^_39.
K+l X

'

Whence x='i, and a;-|-^=3|.

(1(!) Let x=: number to whom B gave, then a;-|-40= nifwiiet

to whom A gave, then

1200

a;+40

1200

: what A gave to each, and

; « B " "
;

. X

1200
I g_ 1200

S+40 IT'
Whence a;=80, and a;-}-40=120.

(17) Let x= number of miles B traveled per day, then

x-\-S= " " A « " ,aad

lx= number of days each traveled
;
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.-. a;X^ar+(x+8)^a:=320, or

Whence a;=I6, and a;-l-8=24.

(18) Let x= the distance in miles from C to D, then

—= number of miles B traveled per day, also

—= number of days B traveled, then

32-1-7X

—

= whole number of miles A traveled, and

—X—= = number of miles B traveled.
19 19 361

19 361

Clearing of fractions and transposing

x=—228x=—11552.

Whence a;=76, or 152.

(19) Let xs= the number bought, then

= number of dollars oacji cost, and, since 240-1-E9
X

6=299, -?^= " " " sold for

;

X—

3

... ^_?f2=8. reducing
X—3 X

8a;5—83x=720.

._ Whence a;^16.

(20) Let x= one of the numbers, then 100—x== the oviier;

then a;(100

—

x)=x^—(100

—

xf, reducing

100a;-^2-=_iooOO+200x, or

a:'+100j;=10000.

Whence a:=61.8034-, ana- 100—a;=38.197, nea.\'.y.

Or by subtracting x^ from the square of 100

—

x, and leducmg

!ve have the equation x^—3001=—10000.

Whence x—38.197 nearly.

(21^ Since each received back $450, they both receive^ f900

and the whole gain was $900—500=.'i
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Let a;=: A's stock, then 500—x= B's stoclc.

X dollars for 5 months is the same as 5x dollars for 1 month.

(500

—

x) dollars for 2 months, is the same as 2(50U

—

xj

=(1000—2a;) dollars for 1 month.

Hence the gain, $400, is to be divided into two parts having the

same ratio to each other as 5x and 1000

—

2x. But 5x-\-{\000—2x)

5x
=3a;-|-1000, therefore the parts of the ffain are . ano

3^+1000

, the sum of which is 1, the whole srain.
3j;+1000

"

.-. A's gain is ^ of 400^ ^°°°^
-

3j;+1000 Sx+lOOO

B's gain is il0.5=^%f 400=1^02^0=80te
3X+1000 3j;-|-1000

'

But A's gain =430

—

x.

2000a;
.-. =4aO

—

X.
3^+1000

Whence a;=200, A's stock, and 500—x=300, B's st:>ck.

(22) Let x= first part of 11, then 11-a;= the second
;

also, Ji= first part of 17, and 11—"11= the second
;

then (11—X) ( n—— \ =48, i

(11—a;)(17j;—45)=48j;.

Whence x^5, or jl-,

11-^=6, or ??, and 1^=9, or ^1

;

n X \i

... 17-1^=8, or '^
X 11

Hence the numbers are 5, 6, and 9, 8,

or fl jf , and jf, 'ff, either of which entirely sa .isfi<>8

the conditions.

r23J Let 3,r= the first part of 21, then x= the first part o- 3u
and (21—3x)=+(30—x)==58o;
developing apd reducing

^2 9 3_ ST 8
»• — 5 *

6 •

Whence .r=fi, or 12^', and :;.i= lS, cr 37*.
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Since the second value of x gives for 3a; a number greater than

31, it is inadmissible.

The first value of a; gives for the parts of 21, 18 and 21—18=a
and for the parts of 30, 6 and 30—6=24.

(24) Let x= the first part of 19, then 19—x= the second

part ; and since the difference of the squares of the lirst

parts of each is 72, therefore, Jx''-\-'Tl must represent

the first part of 29, and 29

—

Jx'^-\-12 the second part.

.-. (29—V^5q:i72)2—(19—a;)2=180,

developing and reducing

297x2-f72=19a;+186;

squaring each side and reducing

40x2—589a:=—2163.

Whence x=l, or ^^^ ; this gives

7x^+72=11, or 4^5^.

19—a:=I2, or \%'

,

29—7x^+72=18, or ''-^O^K

Whence the parts are 7, 12, and 11, 18,

O"^ 40 ' 4T) ) anU 4^. 4ij

Article 239a.

d) In order that the negative answer, —9, when taken posi-

tively, shall be correct, the question should read : Required
a number such, that twice its square, diminished by 8
times the number itself, shall be 90. '

(2) From this question we see that the negative values satisfy

the question oqually well with the positive, the only dif-

ference being that in one case we subtract -\-3 from -[-7

and in the other, —7 from —3,

(S) Let x= cost, of watch, then x= per cent, of loss and

xX =—= actual loss.
100 100

.•. X— =16, or
100

X -100x=— IfiOO.

12
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Whence a;=o0±30=20, or 80, either of which fully

satisfies the conditions. Thus,

20—fjfo of 20=20—4=16 ;

80—TOO of 80=80—64=16

(4) These values of x show that no j,ositive number can be

found which will satisfy the question. But if tlie ques-

tion is changed to read thus : Required a number such,

that 6 times the number, diminished by the square of tlio

number, and the result subtracted from 7, the remainder

shall be 2, either of the numbers, 1 and 5, will satisfy the

question.

(5) There is evidently but one solution, because if 4 is one

of the numbers 10—4=6 is the other ; or, if 6 is one of

the numbers 10—6=4 is the other.

(6) These results show that the question is impossible in an

arithmetical sense. This we also learn from Art. 236,

since the greatest product that can be formed by dividing

10 into two parts, is 25.

(7) This question is similar to that of the problem of the

lights (Art. 239), and the results may be obtained froiu

tiie results there given, by making a=a, b^l, and c=re.

When a=12 and ?i=4, the parts are 8 and 4, or 24 and

—12.

When a=10 and n=l, the parts are 5 and 5.

(8) Calling X the distance from the earth, a=240000, ^=80
and c=l, we have by the solution to the problem of the

V a^b ajb
lights, x=—=

-, or x^—- —-
V'+n/" Jh—Jc

To prepare these formula for numerical calculation, mul-

tiply both terms of the first by ^b—^c, and of iba

second by ^b-{-Jc ; this gives

^_a(/>-Vte)_240000(80-V80)_.,^,^^^
b—c 19

- -r

or .^<HVfc)^240000C80+^SO)_,,,,^„
b—c 79

a—x=240000—21586.5. .'5=24] 34.5.

and 1—0=270210.4—240000=30210.4.
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BINOMIAL SUEDS.

Article 241.

(3) A=n, ^B=6^-2=J12; 0=^121—72=^49=7;

^.+VB=Jii±?+^li=-'=3+jf.

(4). A=7, 7B=4V3=V48 ; C=J49—48=1 ;

... ^w.--/-±i-/-ri=.-^e.

rs) A=3, VB=2J2=V8 ; C=^9—8=1 ;

.. ^.^vl=/4i=t^t:!=v&..

(6) A=13, ^li=2^i0=^\-20; 0=^169—120=7;

... ^a+vb=J!J±Z+^/1!=2=vT;+VI

(7) A=17, VJ3=2V60=.^240; C=^2S9—240=7
;

... J.+VB=^!L+2+^-pI.v-1+V^

8) A=x, ^B=2.^j;- 1=^4j;—4 ;
C=7x=—4j:+4=a;—

2

• ^/^-^^=/-^-^/ -?^=V^-^-

;9) A=0, VB=2a^/—l=x/—4a=i
; C=V4a2=2a ;

... ^A+VB=^<i±L«+7t=^=v«+V=^==

VaCl+V^).
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(10) A-—x^y-\-z, J'Q—2^xz+yz=^'i:Xz-{-iyz.

= ^(.r--|-!/'+2'+2j(/—2xz—2^2)=x+y

—

z.

Ia+jb= M+y+^+^+j/—

2

^ /j+y-i-2—(x+y—z'

=V-^+y+-N/^-

II) To find the square root of bc-\-2b^bc—i^

^/A^—B=Jb^c^^Ab'c+4b''=bc—2b^=C.

^A+vi.^?f±^w'i(—ic-f262

= ^bc—b^+h.

To find the square root of ic

—

2bjbc—6'.

A=ic, ^B=2b^bc—b^=j4b'c—4b''
;

^A^—B=JbV—4b'c+4b'=hc—2b''=C.

j ,jj^ l
nc+hc—2b^_ jbc—hc+2b'

-.^bc—b^~b.

.-. Jbc+2b^bc—b^=± l^hc—h^+bl

Ibe—2bVfc^^==± \
Jbc—b^—b

(

Sum =^±2jhc—?;-. j4ns.

To verify this result with numbers, let i^l and c^26.

then Jac+2Vc—/;'=j26+2v'25=±V26+10=rt6

Jbc—2b^b^—b'-=l2ti—2j2E=:±J'2t:,—\0=ziii

and ±6±4=±I0.

But ±2Vte—i'=d=2v'l!5=±10.

The precediug example may be found in the French edition of

Bourdon's Ali;(!lira, where the answ er is given -i-2b which may
be obtained hy giving the sign -t to b.
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TRINOMIAL EQUATIOHS.

Article 212.

(6) a;^—25a;2=— 144,

a;i—25a:H-''i^=+''f®—144=Y ;

~2 3 5 ,7

x2=V±|=16 or 9.

X =±4 or ±3.

(6) 5x''-{-7x^=6132, divide by 5 and complete the square.

.-±a,.,±7-ilW^^Wiv: -935.

The last answer in the book is zh-L^—3740, which is the

name as ±iV—935, since «y—3740=^^^35X4=2^—935.

(7) 9a;^—lla;'=488, divide by 9 and complete the square,

isa Llssi
? — 324

^6 Ut-3_L1 2 1 12 1_i_4 8a ITS 82. .^ — ^*T324— 3-J4T—? _-™-^'^

^3 1 I i_l 3 3

x'— li-4-Ly—6 or — l,yX —
I h:± , g —o, or — jjy ,

x'=8, or —W'
a =±2, or ±y—j',X 183=±iV—183, or ±| ^183

(8) Completing the square by adding 5 to each member,

we have

rJ l;^_|_2 4 9 •X __it_j_ ,

a;J=|±2-i 9=125, or —124;

a;'=(]25)==(5X5X5)=, or (—124)=;

^ =52=25, or (—124)i
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(9) Arranging the terms and complet.ng the square, by adding

"4 to each member, we have

a;«=— i±iy5=32, or —33
;

x^= 2, or (—33)i,

X =64, or (—33)°.

(10) Let ^x-\-b=y, then x-(-5=y', and the equation becomes^

by substitution and transposition,

Whence i/=3, or —2.

.-. ^x+5=3, or —2,

x-(-5^9, or 4,

a;=4, or — 1.

(11) Add 3 to each side, let ^x^—3a:-j-ll=y, then by substi-

tuting the value of y^ and transposing, we have

y'—2j/=3.
Whence y=Z, or —1.

.-. ^j;2—3x+ll=9 or 1.

From which, by squaring and solving the resulting equations,

»ve readily find x=i, or 1, or |±^V—^1.

(12) Add 18 to each member, let ^x'—7a;4-18=y,

then j/^-]-2/=42.

Whence y, or ^x^—7a;-l-18=6, or —7.

Squaring, a;'—7x+18=36, or 49.

Whence a;=9, —2, or i(7±Vl73).

(13) To render this equation of a quadratic form, the quantity

in the parenthesis in the right member must be made the

same as that in the parenthesis on the left. This may
be done by adding —7 to the quantity in the vinculum,

and its equal, -|-7 XI 1=77, without ; the equation then

becomes

(a;2—9)2=3+77+ 1 1 (a;=—2—7)=80+ 1 1 (a;=—9).
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Putting y and i/' to represent x'—9, and (x'—9)', we have

j/2— 1 1j/=80 ;

whence y=16, or —5.

. x^—9=16, or —5, and a:=±5, or ±2.

Q Q

(14) Transposing - and putting y=:x-\--, we have
X X

y^^-y=A2.

Whence j/=-|-6, or —7 ;

.-. a;-(-?=:-(_6, or —7,
a-

and or'—6x=—8, or a;2+7x=—8.

Whence j:=4 or 2, or ^(—7±7 IT).

CJS) This equation may he placed under the form

Putting x^
I

1+— 1 =y, we have

2/^—3</=70 ;

wlience y=10, or —7.

.-. a;=/ 1+1 )=10, or —7,

x^'-\-lx=\f), or—7.

Whence a;=3, or —3J,or 1(—lrfc^/—251)

(16) Multiplying both sides by ^ x, we have

x^(>—x^=l-]-x^,

Squaring x\io—x^)^\-\-^x''-{-x*,

transposing and reducing x^—2a;':=—3.

Whence x=±J{l±lJ2).

Article 243.

(2) We find the square root is x^—x, with the remaindei

—3a:'-|-3x ; hence the equation may be written thus,

(a;2—x)'—3(^2—x)=10S.
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Putting x''—x=!/, we find y=^l2. or —9.

.-. x^—x^l2, or—9.

Whence a;=4, or —3, or ;',(1±V—35).

(3) Tlie square root of the left memher is x^—x, with the

remainder —a;^-|-x ; hence the equation may be written

thus, (x2—x)2—(a;2—a;)=30.

Putting K^

—

x=!/i we find y=6, or —5.

-. x'^—x=6, or —5.

Whence x=Z, or —2, or J(1±n/— 19)-

(4) Blultiplying both sides by x, we then find the square root

of the left member is x-—Sx with the remainder

~\-2x-—6x ; hence, the equation may be written thus,

(x2_3x)24-2(a;2—3a;)=0.

Let x'—3x=!/, then y^-j-2!/=:0, and i/=0, or —2.

.-. x-—3x=0, or —2.

Whence x^O, or 3, or 2, or 1.

The value, x=0, does not satisfy the given equation, but is a

root of the equation x(x^—6x^-|-ll''^—6)=U, and was introduced

by multiplying the given equation by x.

(5) The square root of the left member is x'^—3x with the

remainder —ix^-\-\2x; hence the equation may be writ-

ten thus, (a;2_3x)2—4(a;2—3x)=60.

Let x^—Zx=y, then y^—4^=60 ;

whence 2/=10, or —6.

.-. a;2—3x=10, or —6.

Whence x=b, —2, or ^(3±V— 15)-

(6) The square root of the left member is x'—4x, with the

remainder —%x'^-\-'iix ; hence, the equation may be

written (x^—4x)^—6(x^—4x)=—5.

Let x'

—

Ax=y, then y-—6?/:=—5 ; from which jf=5 or 1

;

.-. x^—4x^5 or 1.

Whence x=5, or — 1, or 2±V5.

t7) Multiplying both members by 4 to clear the equation of

fractions and render the first term a perfect square ; then

transposing IBx', wo find the square root of the left mem
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ber is 4x^—2x, with the remainder —ix'^-\-2x; hence
ti"i2 equation may be written

(4a;2—2j;)2—(4x2—2a;)= j 33

.

Let 4x=—2a;=2/, then y''—y=m, and y=12, or — 11.

.-. 4a;'—2x=12, or — 11.

Whence a;=2,—|, or l(l±V—43).

(8) Observe that L+^=_-|-i, then omitting i on each side,
3a; a; 6 6

and multiplying both sides of the equation by 14j;' to

clear it of fractions ; after transposing we nave

a;^— 1 4x3-[-56a;2—49a;==60.

The square root of the left member is a;'—7a; with the re-

mainder Va:'—49a; ; hence, the equation may be written

(a;'—7a;)2+7(x^—7a>)=60.

Let x'—1x=y, then y2+7y=60, from which we find

y=5, or — 12.

.-. a;=—7a;=5, or — 12.

Whence a;=4, or 3, or i(7±v'^.

SI MTTL T A NE O S EQUATIONS OF THE SECOND
DEGREE CONTAINING TWO OK MOKE

UNKNOWN QUANTITIES.

Article 245.

Note.— Instead of indicating each step of the solution of the exam-

ples in this article, it has only been deemed necessary in most cases to

point out the particular step on which the solution depends.

(5) Subtract the square of the first equation from the second,

then add the remainder to the second, and extract the

square root, which will give x-\-y.

(6) Add twice the second equation to the first and extract the

square root ; also, subtract twice the second equation

from the first and extract the square root.

(7) Subtract the second equation from the square of the first;

then subtract the remainder from the second equation and

extracfthe square root.

13
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(8) Divide the first equation by the second, this will give

(9) From the cube of the first equation subtract the second,

dividt; the remainder by 3, and we have xy{x-\-y)=3Q8 ;

divide by a;-|-!/=ll, and we have !cy^28. Having x-\-y

and xy, we can readily find x and y, as in Form 1, Art. 245.

Or, thus, Divide the second equation by the first, subtract the

quotient from the square of the first, and divide by 3, which will

give xy.

(10) From the first equation by transposing and extracting the

cube root of both members, we have x=2y ; then by

substitution in the second we readily find the value of y,

and then x.

(11) Subtract the second equation from the first; add the re-

mainder to the first and extract the square root, which

will give x-\-y=zizl2, then divide the second equation by

this, and we have x—y=dz2.

(12) Divide the first equation by the second, this gives x-\-y^8;

from the square of this subtract the -second equation, and

divide by 3, this gives ot/=:15 ; subtract this from the

second equation, and extract the square root, which will

give X—y=-\-2,

(13) Subtract the first equation from the square of the second,

this gives xy^AS ; subtract three times this equation

from the first and extract the square root, this gives

X—y=±8.

1 )) Divide the first equation by the second, transpose Slxy,

and subtract the resulting equation from the square of the

second, this gives ^xy=4, or xy^8 ; then by the method

explained in Form 1, Art. 245, we readilv find a;-f-j/==±li.

(!6) Dividing the first equation by the second, we find x^—xry

_|-2/-=7 ; subtracting this from the second equation we
have 2a:j/=6, or xy=S ; then adding this to the second

equation and extracting the square root, we find x-\-y

=±4 ; also, subtracting xy=:3 from the equation a'-

—

xy

-|-»/'=;7, and extracting the square root, we find x--y=±.2
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(16) Let x*^P and yi=Q„ the equations then become

P^—a==P+Q, (1)

ps—Ci'=37. (2)

Dividing each side of (1) by P+Q, we have P—Q=l, then

dividing each side of (2) by P—0,^1, we have

P^+ PQ,+Q^=37, (3)

P2—2PQ+Q,2= 1, by squaring P—Q=l.
Subtracting and dividing by 3, we find PQ,^12, then by

adding this to (3) and extracting the square root, we find

P+Cl=±7,
but P—Q=l.
Whence P= 4, or —3, and Q.=3, or —4,

. . x=16, or 9, and y=9, or 16.

J. I

(17) Let a;4=P and y'^^Q,, then by substitution the equations

become P -|-Q, =5,

P2-1-C12=13.

The values of P and Q, found as in example 1, page 212

are P =2 or 3, Q,=3 or 2.

.•. a;4=2 or 3, and a;=16 or 81
;

y3=3 or 2, and y=27 or 8.

(18) Let a;5'=P and 2/^=Q, then by substitution the equations

become P -|-Q, =5,

P3+Q,3=35.

The values of P and Q. found as in example 3, page 213,

are P=2 or 3, Q,=3 or 2.

.-. xi=2 or 3, and x=8 or 27 ;

y^^3 or 2, and y=27 or 8.

(I9j Let a;^=P and y^=Q„ then by substitution the equations

become P +Q =4,

P3-1-C13=28.

The values of P and Q, found as in the preceding example^

are P=3 or 1, Q,= l or 3.
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I

,•. x^=3 or 1, and x=9 or 1.

1

j/J=l or 3, and y=l or 9.

(20) Square both members of the first equation, and from tlie

result subtract four times the cube of the second, and we

have x^—2xY-\-y^=n2225.

extracting the sq. root x'—2/'=±335 ;

but a;5+2/'=351.

Whence, by adding and subtracting, dividing by 2 and extract-

ng the cube root, we ho'e x^l or 2, and y=2 or 7.

(21) Raising both sides of (1) to the fourth power, we have

x'-\-4x^y+6xY+ixy'+y^=256,

but x^ +y=82 ;

.-. 2a;<+4a;'j/+6a;2y'+4OT/3_)_22/4=338 ;

or x'^+2x^y+3xY+^^y^+ 2/''=169.

Extracting the sq. root x^-{-xy-{-y''=13 (3).

Squaring eq. (1) x^-\-2xy-\-y^=:l6
;

Subtracting xy=3 ; hence 3a;^=9, and sub-

tracting this from (3), and extracting the square root of

tlie resulting equation, we get x—y=^dz2 ; from this, and

x-\-y=:4, we get x=3, or 1, and y=l, or 3.

(22) Adding the three equations together, and dividing bv 2

we have a:y-|-J:z+y^=— "*"
, (4).

Sibtracting from this successively the three given equa-

tions, we have yz=:Jl , (5)

xz=^±^, (6)
2

a-\-b—

c

,-^
^=-^=5^ . (7)

Multiplying the three equations together, and extracting

the square root, ccy^=^ ^(
.a+b~c)^a+c-h)(b+c-a-)

l
_

(8)
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Dividing eq (8) by equations (5), (6), (7), respectively^

we obtain the values of x, y, and z. Thus, to find x

on/z

/
|

(a+/)—e)(a+c-6)(i+c-a)
^

yz fc+e—

a

2

= /
Ka+i-e)(a+c—5)(i+e—a) 4 (

^ < 8 Q,j^c—af\

=-t /(a+i—e)(g+c—t)
\ 2(i+c—a)

ADFECTED E Q IT A T I H S .

Article 250.

(,3) Adding the two equations together, and dividing by 2, we
find x--\-x='iiO.

Subtracting the second equation from the first, and dividing by

, we find ?/^-|-y=90.

(i) Multiplying the first equation by 4, and subtracting the

result from the second, and transposing, we find

y'— 18,y=45.

Whence ^=3, or 15, and x^\i—4!/=2, or —46.

(5) From the first equation y=_f2li_=l|a;-|-7, tliis substi-

tuted in the second gives

3x2+2(1 ^x—4)'=14,

developing and reducing, we have

x'^—'ix^—'-i.

Whence 1=2, or ll, and !/=10, or 8|.

(.6) Clearing the second equation of fractions by multiplying

by xy, and substituting the value of x=y-\-2, found from

the first equation, and reducing, we have

V'—1^='/. and i/=3, or — 1|.

(7) Let y=lx, then substituting this instead of y, finding the

value of x^ from the resulting equations, placing these

values equal to each other, and reducing, we find /=±1^.
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Then substituting tliis in the value of x', we find x and

thence y.

(8) Let y=te, then substituting this instead of y, finding the

value of x^ from the resulting equations, placing these

values equal to each other, and reducing, wo find i^-j-lii

or —f . Having this, the values of x and y are readily

found by substitution.

(9) Let a:y=t!, then by substituting in the first equation, and

transposing, we have y^-l-4u=96, from which we find v,

or a;!/=-)-8, or —12. Having the values of x-\-y and xy,

we readily find x and y by the method explained in Form
1, Art. 245.

(10) Let _=u, then by substituting the values of v and i)'

y
in the first equation we find !>^-l-4i;=%', from which

D or _=-(-_, or — . Then, from these equations, and
y ^3 3

X—y=2, we readily find x and y,

(11) Denoting xy by v, the first equation becomes, by substitu-

tion and transposition, 1)^4-8"= 1^0, from which we find v

or Xi/=-|-10, or — 18.

From the equations a^=-|-10, and a:-|-3i/=ll, we find a;:=5, or

B, and i/=2, or |.

From the equations xy^=— 18, and a;-l-3y=ll, we find x=:V

q=,^v'337, and ^=^±^-7337.

(12) Let iJx-\-y=v, then from the I'' equation, we have

d2_|-ij^12, from which u=3, or —4; hence, d^, or a:-(-j/=9,

or 16. Having the values of x-\-y and x'^-\-y-, we can

find the values of x and y by the method e.xpiained in

example 1", Art. 245. The equations x+)/=9, and

a;'-|"2/^=41, give x=b or 4, and )/=4 or 5. The equationt

x-\-y=\^, and x^-|-j/^=41, give

J;=8±1V— 174, and y=8=FAV— 174.

(13) Adding twice the second equation to the first, we have

a:^-|-2x?/+!/=-|-x-|-i/=30,

or (x+?/)2_[-(j^+j,)=30.

Whence x-\-y=-\-h, or —6.
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From these equatkns and the value of xy=6, we readily find

the values of a; and y.

(14) Transposing 2xy in the first equation, and then adding

both equations together, we have

x''-\-2xy+i/-\-4x+Ay=i 17,

or ix+yy+4ix+y)=n'7.
Whence x-\-y=-\-9, or —13, and x=9—y, or —13

—

y.

Substituting these values of x in the second of the gwen equa-

tions, we have y''-\-2y=36, or y^-{-2y=:5T

.

From the 1'' equation we find y=5, or —7 ; whence a;=9 or

16. From the 2"^ equation we find y=—1±V^8 ; whence

«=—13±s/58.

(15) Let -:=« and -=2;, the equations then become
X y

V +z =a, (1)

v^+z^=b. (2)

Subtracting the second equation from the square of the tirst.

and then subtracting the remainder from the second, and extract-

ing the square root, we find v or _= "^
, and z or -

X 2 V

= ^ ; whence x= , and y=^~
a±j2b—a^ a±^2b—a^'

12
06) From the first equation x=. , and from the second

X— ^^
; whence J^=_iL, or 12(l4-y0=18(y+y');

dividing each member by 6, and then by l-\-y, we have

2(1

—

y-\-y^)^3y. From this equation we readily find

y=2, or 2 ; whence x=2, or 16.

(17) Adding twice the second equation to the first, we have

x''-{-2xy-\-y^-\-x-]-y= 156,

or (^+y)=+(x+y)=156.

Whence x-\-y=-\-12, or —13.

By substituting the value of x-{-y in the second equation, wa
find xy=21, or 52.

From the equations x-\-y=\2, and xy=21, we find a:=9 or 3

and !/=3, or 9.
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From ihd equations x-\-y=—13, and xy^b'2, we ftid

a:=K—13±V—39), and 2/=i(— 13=FJ—39).

18) From the 1" equation, by transposing, we find

(x+j,)2_3(a;+2/)=28.

Whence x-\-y=T, or —4, and y=1—x, or —4—a:.

Substituting the value- of y instead of y in the second equation,

"'6 have 2a;2—17a;=35, or 'ix^-\-f)X=—35.

From tlie first of these equations we find x=i, or 3|, whence

From the second we find a;=—|±i^/—255, and y=—y =F4

;^—255.

(19) Let f — ) "=t!, then (^ ] ^=1, and d+-=2, ot
\ a;-|-i/ / \ ^x I V V

v^—2v=— 1, wlience v=-\-l.

Zx
.-. =1, whence 2x=y,

Substituting 2x instead of y in the second equation we have

2a:2_3a;=54.

Whence x^=6, or —4^ ; hence ^=^12, or —9.

(20) Transposing 3y and adding 5 to each member, we have

a;2+3j/+5+4(a;2+33/+5)^=60.

Let (,x^+3y+6)^=v, then

i.5-}-4u=G0.

Whence v=^6, or — 10.

. . a;2+32/+5=36, or 100.

Finding the vakie of y from the second equation and substitut-

ing it in the preceding equations, and reducing, we have x^-{- 'J'x

^an5,or x'+'ix=^K

From the first equation a:=5, or —— , then since ;/=
,

7 7

we find y=2, or —Va"'

From the second equation we find x=—§±5^317, and thence
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(21) Tlie first equation is

{x-\ry)^ '> i-J^+y'

JMultiplying botli mombcrs by J x-\-y, we have

y -1-5+y^l'^

x^y y 4

Let -l—=v, then v-\--^—

.

x-\-y V 4

Wlience v or _Z_r=4, or _.
a;+y 4

Fi'om tiie equations ^--=4, or _, we find i=—-y, or +3j/.
a;-|-y 4 4

Substituting tlie first value of x in tlie equation x=y''-\-^, wa

find y=—3±iV— 119; lience aizzrijTg^^V—H9.

Substituting the second, value of x in the equation a;^y'-}-2,

we find y=2 or 1 ; hence x=6 or 3.

QUESTIONS PKODUCING S I M U L T A N E O XT S EQUA-
TIONS OF THE SECOND DEGREE CONTAINIKC
TWO OR HOSE UNKNOWN QUANTITIES.

Article 251.

Note.— As the first five examples may be solved without completing

!h<) square, their solutions will be given in this form.

(1) Let X represent the greater number and y the less,

then y(a;-|-!/)=4i, (1)

and x{x-\-y')='dy

.

(2)

Multiplying the equations together, dividing both members bj

ry, and extracting the square root, we find x-\-y=6.

Substituting 6 for x-\-y in (1), we have Gyr=ix, or y=f»
^x

Then from the eq lation x-\-y^=&, we have j:-|-l_=x ; whence

r==3.6, and 2/=2.4.

(2) Let x= the digit in ten's place and y= the digit is

unit's place, then \Qx-\-y^ the number, and

x{Wx-\-y)=:\Qx'^-\-xy=:i&, (1)

also a;(*-l-y)= x'^-\-xy=\0 (2)
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Subtracting (2) from (1), 9a;-=:36, whence x=2, and ;, is readl'y

foind =3.

(4) Let x= the greater number and y the less, then

(ix-y)(x^-,/)= 32,

For the method of finding the values of x and y, see the A.ge-

bra, example 4, page 213.

(5) Let X and y represent the numbers, then

xy = 10,

a;'-|-3/3=133.

For the method of finding the values of x and y, see the soltr-

lion to example 20, Art. 245, (page 148, of Key).

(6) Let x^ tlie greater number and y th» less, then

(^^=24, (1)

y

(^+2/)y- 6. (2)
X

Dividing the first equation by tne secoiid, we have

y (^+y)y y^ 6

Wlience -^2, and x^2y ; substituting this value of a; in

y
(1) we find 6y=24, or y=4 ; hence x=8.

(6) Let x= the less number, then a;+15= the greater, and

j:(a:+15)_^3
2

Dividing by x, and completing the square, we find a;=3, or

—2 1 ; hence a;-}"15=18, or 12-}, therefore the numbers are i

md 13, or —2l, and 12 A.

(7) Let x=: the greater number and y= the less, tlien

xy =24,

and x''—y2=20.

From the first equation y=— ; substituting this ior y in the
X

second equation, and clearing of fractions, we find x''—20j,-'=576.

Whence x^=5G, and x=6 ; hence y=4.
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(8) Let K= the greater number, and y= tlio less, then

x'^-\-xy=\2Q, (1)

Let y=:vx, then by substitution the equations become

1 on
x''-^x'v=120, whence x^= "

;

l-\-v

anc vx^—uV= 16, whence x''=
V—u''

120 16

l-\-v V—v''

From this equation wc find t)=|, or i,

then x2=i^=72, or 100,
1+v

and a:=6^2, or 10,

2/=4VT, or 2.

riic answers 10 and 2 are the only ones given in the Algebra,

but it may be easily shown that the others are strictly true in an

arithmetical sense.

(9) Let X and y represent the numbers, then

x'+y'+x+y==42, (1)

,r(/=15. (2)

If wo add twice the second equation to the first, the

resulting equation is

(a;+3/)-^+(x+y)=72.

Whence x-\-y^8, or —9.

Havinf x-\-y and xy, the values of x and y are to be found as

in example 13, Art. 250. (See Key, page 150.)

We thus find a;=5 or 3, and y^=Z or 6,

or.=rg±VZ^,andy=-^TV^T
2 2

f 10) Let X and y represent the numbers, then

x+y+xy:=47, (1)

x^+y''—{x+y)=62. (2)

For the method of finding the values of x and y see lie soTu-

tion to example 17, Art. 250, (Key, page 151).
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(11) Let x= the greater number, and ?/= the lepa, tlien

xy =x-{-ij, (1)

x-—y''=x-\-y. (2)

Dividing each member of (2) by x-\-y, we have

X—y=l, or x=y-]-l.

Substituting this value of x in (1), and reducing, we find

y2—y=l.

Whence y=},±:}, jj, and a;=|zbi^/5.

In order that the numbers may be positive, we can only use

the upper sign ^ this gives a;=2.668, and 1/^1.668 nearly.

12) Let x= the less number, and xy= the greater, then

x^y=x^y^—x^, (1)

X'y''-\-x''=x^y^—a;'. (2)

Dividing each member of (1) by x^, we have y^y^— 1, oi

y''z=y-\-\, from which we find y=\-\-}-Jb.

Dividing each member of (2) by x-, we have !/'-|-l=:r(y'— 1),

but 7/'—y+l, and multiplying both sides by y, we have y'=?/'

J^y=:y-\-il-\-l=^y-\-\. Substituting these values of y" and !/',

the equation becomes

y+2=x(2y) ;

y+2 f+j^r (S+iV5) 1-V5
hence x=^-z—= =-= — X =

^y 1+V5 1+V5 1—^/5

4-2 V5-; -ays i

~ 1—5 ~ —4 —2^*^-

=.1(5+V"5)-

1_13) Let a;= the price in dollars of a pound of mace, and !/:=

the price of a pound of cloves, then

80x+ 100^=65 ; (1)

20—= pounds of cloves for 20 dollars, and
y

—= " " mace for 10 dollars.
X

.: ?2-G0=L0, (2)
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From these equations we readily find x=\ dollar =50 cts,

and 'y=l dollar =25 cts.

(14) This question may be solved by using only one unknown
quantity. Thus,

Let Sx= A's gain, then 20x= B's stock, and 100

—

Sx=
B's gain, and 40x—200= A's stock.

.-. 40a;—200 : 20x : : 3x ; 100—3x.

Since the product of the means is equal to the product

of the extremes, 60x==(40x—200)(100—3x) ;

reducing x'—^^x=—'-"-^-^.

Whence a;=:20, hence 3x^60= A's gain, &c.

(16) Let X and y represent the numbers, then by the question

xy+x+y=23, (1)

x^+y'—5{x+y)=8. (2)

Adding twice eq. (1) to eq. (2), we have

a;2-f2xy+2/'—3(j;+i/)=54,

or (x-\-yy—3(a;4-2/)=54.

This is a quadratic form and we readily find x-\-y^9, then by

substituting the value of x-j-y in eq. (1) we finda;y=:14. Having

x-\-y and xy, we can find x and y. (See Form 1, Art. 245.)

(16) Let X, y, and z represent the numbers, then

x-^y—(ij—z)=x—2y+z=^5, (1)

x+ y+z=U, (2)

xyz=i950. (3)

Subtracting eq. (1) from (2), and dividing by 3, we find

y=13; then substituting this value of y in (2) and (3),

we have

x-\-z—31,

3.2=100.

Whence by Form 1'', Art. 245, we readily find x=25,

and z=6.

(IT) Let X, y, and z represent the parts, then

x+y+z=26, (1)

a;2—y2=:2/2_z2, (2)

^^+jy'+^'=300. (3^
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From eq. (2) by transposing y'^—2', we have

Subtracting this from (3), dividing by 3, and extracting

the square root, we have i/^10; then by substitution, equa-

tions (1) and (a) reduce to x -\-y ^16,

and x2+y2=200.

These equations are similar to those in example 1, Art. 245,

and may be solved in a similar manner.

(18) Let X and 7/ represent the number of men respectively in

the fronts of the columns A and B, when each consisted

of as many ranks as it had men in front ; then x^ and y'

represent the number of men in the respective columns.

.-. _= number of men in rank, when A was drawn up
y

with the front that B had, and •/-= the number of men
X

in rank when B was drawn up with the front that A had,

hence a7+y==84, (1)

iV^=91- (2)

y ^

Multiplying both members of (2) by x(/, we have

sciJ^y-i=!d\xy (3)

Cubing eq. (1) and subtracting (3) from the result, we

have 3x^(x+7/)=(84)=—91x!/, but x-t-y=84,

252x!/=(84)'—9lxj/,

343xy=(84)3

or, 7'xj/=(7xl2)'=7'Xl-'

xy=12==1728.

Having x-|-y^=84, and X(/^1728, we find x=48, and t/=3fi,

Dy the method of Form 1, Art. 24.').

.-. x-^48'=2304= men in column A ;

y2=362=1296= " " " B.

F R M U L .S .

Article 252.

Note.— ExKinples 2 to 5 have pither been solved before, or are so

elmple as to require no explanation. 'Wn shall, therefore, merely
'.^xjircss the vr.'^pri-livn furimila in the form of Rules.
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(2) Pkoblem.— To find two numbers, having given the sum
of their squares, and the difference of their squares.

Rule.— Add the difference of the squares to the sum of the squares,

muUipli/ the sum by 2 and extract the square root ; half the result

will be the yrealer number.

To find t]ie less number, proceed in the same manner, except

lliat the difference of the squares must be subtracted from their

sum.

Ex. The sum of the squares of two numbers is 120', and the

difference of their squares 60 ; required the numbers.

Ans. 9i, and 5]..

(3) Pkoblem.— Having given the difference of two numbers,

and their product, to find the numbers.

Rule.— To the square of the difference add four times the product,

extract the square root of the sum ; add the result to the difference,

and also subtract the difference from it, then half the sum will be

the greater number, and half the difference the less number.

Ex. The difference of two numbers is U, and their product 80
;

required the numbers. Ans. 5 and 16.

(4) Problem.— To find a number, having given the sum of

the number and its square root.

Rule.— To the given sum add |, and extract the square root, sub-

tract the result from the given sum increased by }^, and llie remain-

der will be the required number.

Ex. The sum of a number and of its square root is 8| ; re-

quired the number. Ans. 6|.

(5) Peoblem.— To find a number having given the difference

of the number and its square root.

Rule.— To the given difference add \, extract the square root of the

sum, and to the result aid 'tlie given difference increased by ^ ; the

sum will be the required 7iumber.

Ex. The difl^erence of a number and its square root is 8| ;

required the number. Ans. 12j.
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(6) x+y^s. (1)

Squaring, a;^-j-2j;y+y^=s',
'

but xy=='p, therefore by transposing 'ixy, or 2p,

Cubing eq. (1) x^-\-Zx''y-\-ixy'^-\-y^=s^,

or x^-\-Zxy(oc-\-y')-\-y^=s^,

or x^-\-Zps-\-y^=s^

.

.". a;'-)-^^=s'

—

^ps.

Again, raising x-\-y^=s, to the fourth power,

x''-^ix^y-\-exY-\-ixy^-\-y'>=s\

but ix'y-\-6x'^y''-\-Axif=:Axy{x'^-\-y'^)-\-Qp''

=4p(s2—2;))+6;)2=4jt)s2—2;;=.

. . a;''+yi=s''—4jt)s2+2p2.

As an additional example, let the following problem be proposed:

Pkoblem.— To find two numbers having given their product,

und the difference of their cubes.

Let X and y represent the numbers, then

x^—y^=za, (1)

xy =J. (2)

Squaring equation (1), adding to the result 4 times the

cube of (2) and extracting the square root, we have

a,3_|_^3_a2^4J3. (3-)

Adding together equations (1) and (3), dividing by 2 and

extractinir the cube root, we find

Similarly, by subtracting equations (1) from (3), we find

y=V\lU^'+'ib'—a)\.

These formulae give the following

R UI.E.— To the square of the difference of tlie cubes, aid four times

the cube of their product, extract the square root of the sum ; add

the result to the difference of the cubes, also sutdract the difference

Jrom it, then the cube root of one-half the sum will be llie greater

number, and the cube root of one-half the difference tlie less number.

Ex. The difference of the cubes of two numbers is 604, and

their product is 45 ; required the numbers. Ans. 5 and 9.

In a similar manner special rules might be formed for the solu-

tion of Hourly all the questions on page 214 of the Algebra.
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SPECIAL SOLUTIONS AND EXAMPLES.

Article 253.

(.2) By adding 2x to each member, the equation becomes

x'—x=2-\-'2x,

or x{a^—l)=2(x-{-l),

divide both members bv x-\-l,

x{x—l)=2.

Wlience x=— 1 or 2.

2
(3) Transposing 4 ^.nd — , the equation becomes

or (,x+l)(.x-^)=kx+i,),

.-. a;-l-|=0, or a;=—|.

Also, X—5=^.

Whence a:=I(ld=-y'lO)-

(4) Transpose 1 to the left member, then the cqualia .n*-" »e

placed under the form

2x\x—l)+x^—l=0,

or 2a;=(x—l)+(a;+l)(x—1)=0

.-. X—1=0, or x=l.

Also, '2x''+x+l=0.

Whence x=li—l±J—f).

(6) The equation may be placed under the following form

xS—2x^—x^-\-2x—x-\-2=0,

or x\x—2)—x(x—2)—(,x—2)^0.

.-. X—2=0, or x=2.

Also aP

—

x—1=0.

iJVhence x=l(l±«y5)

(6) Multiplying both sides by x, we have

:ri=6x2+9x,
14
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or, .r<-f3x'=9x2+9x,

a;^=3x, or a;=:3,

or x^+Sx=—3, and a;==I(—3±V—3)-

Or, thus, x^=6x+9.

.-. a;'—27=6x—18=6(x—3),

dividing by x—3, a;^-l-3a;4-9=6, from which the value si

X is readily obtained.

(7) x+7x^—22=(x—8)+7(a;5—2)=0,
1

dividing by x^—2, we have

a;3-|-2x^+4+7=0

a;l_|_2x^=_ll

a;S-|-2x^4-l=—10

xi=—ldzj—l0

X =(—1±V—10)'=29±7^— 10.

From x^—2^0, we have a:-'=2 and x-=S

(8) This equation may be written under the form

x'—8l4-'3^(x'—9)x=0,

or (:<;2+9)(j:=—9)+'/(x2—9)x=0.

... x'^—9=0, and x=-\-i, or —3.

Also,a;2+9+'/i=:0.

Whence x=l{—n±sj —li>t).

(IC) Multiplying both members by x, and adding x-\-l to each

Bide, we have x^—2x-|-l=4-|-4^.r-j-a;,

extracting the square root, x— l=±(2-|-;^a:),

From the equation x—l=2+;^r, by transposing Jx and

—
1 , we have

X ;^.C= 3.

Whence Jx=l±.\Jvi, am\ .c=.i,('7itVl3^
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From the equation x—1=—2

—

J x, similarly we find

4x=—\±\J^, and a;=.i(—iq=V'^).

\\ 1) Adding _ to eacli member, we have

4 x'^ X X-'

1x1 I 1 \
extracting the square root, ——-==h (

3-j--
1

,

1x 1 1Prom the equation ——-=3-|-_, by clearing of fractions
2 a; X

transposing and reducing, we find

x'—lx='{'.

Whence x=2, or — ^.

1x1 1From the equation —

—

-=— 3— _, similarly we find
2 a; X

a:'4-5.r=V'.

Whence a;=:i(—3zfcJ93).

—^ I to each side, we

liavo x^-\- -f- I — I ==16-l-34a;-|- 1 ,

extracting the sq. root, x^+—=± ( 4+lIf
) .

1 7a; 1 7a;From the equation a;'-|- =4-)-
, we have

4 4

a;'=4, and a;=rt2.

17a: 1 7j;From the equation I'-J-—=—4— , we have
4 4

x'-\- =—4.

2

Whence a;=—8, or — '.

(13) F'rst —(3a;=+x)=— 3a;= I \-\-L
) .

Dividing both members of the equation by x*, and adding

to each side — , we have
4t'|
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70
, _9__289
4X'' 4x*'\ 3x / a;2 V ' Sx / 4a;'' a

13 17
extracting the square root, 1-|-——

—

^±—

,

hence 1+ =+ or — ,

Sx x' X-'

clearing jf fractions, a;'-|-^a;=-|-10, or —7.

Whence x—Z, or —
3J,

or '(—IztV—251),

(14) Multiplying by 2, and adding —-j-— to each side, we
36 36

36
,
18

,
81 x'l 8a;

,
16

have —-1-—+—=—+—+— ;

a;2
'

a;
' 36 36 36 36

extracting the sq. root,—[--=± ( -+- )

.

16 \ 6 6 /
'

Taking the positive sign, we have the equation

x^—5a:=36, from which x=9, or —4.

From the equation _-l-_=— ( ~+_ ) , we have
.r 6 V 6 6 /

the equation a;'-l-13x=:—36, from which x=—9, or —4.

.•. the values of x are -|-9, —9, and —4.

(lb) Mult'plying both sides by 3, transposing and _ ap^i
.84^1

X-

adding 1 to each side, we have

8lx'+18+l=?--*i+^+16,
x' X' X

1 / "9 \
extracting the square root, 9x+-=dz —+4 I ,

X \ X /

Taking the plus sign we find x=2, or — 'g''
;

taking the minus sign " " x=l{—2^=^—ii<-i6).

(19) Let x-|-2/=s, and xi/=p,

then x2-|-j/'=s'

—

2p, and x'-|-2/'=s'—3sp,

and by substitution the first equation becomes

2s'-|-l=(s'—2rtO+s'—3sp),

but s=x4-i'=3, hence by substitution tlie equation
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becomes 55=i9—2p){p-\-27—9p)=2i3—126p-]-\Gp',

or 16^2_]26^=_188.

Whence p=*g or 2.

Taking a;-(-y=3, and xi/=2, we readily find x=2, ani

y=l.

(20 Dividing both sides of the equation by l-\-x, we have

1

—

x-\-x''=a{l-\-xy=a-\-2aa:-\-ax^,

transposing and reducing,

(a—l)x=+(2a+l)a;=l—

a

or x^-\-—!

—

x= =— =—1.

a— 1 a— 1 a—

1

^;, 2a+l^,(2a4-l)^_C2a+l)'_^_ 12a-3

a— 1 4(a—1)2 4{a—iy 4(ffi—l)^"

_2a+\__-±Jl2ar—3
2(a— 1) 2(ffi— 1)

^_—2a—l±Vl2a—

3

_l+2ffl±Vl2a—

3

2(a— 1) 2(1—3)

Since both members of the equation are divisible bv l-f-*>

therefore l-|-^=0, and x=— 1.

(21) «-l /:r-2a-?=l.
^ ^ x' X^ X

Transposing, multiplying by x, and arranging the terms

under the radical, we have

j
?

—

X )
24-

(
-

—

X
J

=—2a, by squaring and transposing.

Putting _

—

x= a single unknown quantity, and finding
X

its value, we have

f—a;=_ 1± 1 Jl_8a=J,
X

whence a

—

x^=hx, or x'-\-hx=a.

2
-^
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Substituting the value of h, we find

=J \l±JlSa±j2±:'2jl—8a+8al .

(22) Let x-]-y=:s, and 3:y=p, then the equations become

s+jE,5+P==85, (1)

p+s24-ps=97, (2)

adding s--\-2ps-{-p^-\-p-\-s=182,

or, (s+;))2+(;)+s)=182.

Whence s4-^=-l-13, or — 14.

Taking s+|'=13, s=13—;>, and substituting this in (1)

13—;)+ja(13—p)4-p==85, whence p=6.
.'. x-\-y=T, and xy=G, from which we find as=6 or

and y=l or 6.

(23) ^+«^-(a-&)(2c+ad)^=(a+i)^-(a=-6')x'.
a' a da
(a'

—

b^^d^x-—2acdx—aH''x-\-2bcdx-\-ahd^x—acdx- -hcdx

=—acd- -2c^,

{a?—i^)(?'x'

—

3acdx-\-bcdx—a^d'x-\-abd'x=—a,r,d—2c'

3 3aC(Z

—

bcd-\-a'd''—abd^ acd-\-2c^
^
~~

(a'—i=)d2 ^ (a=—6=)d2

^, _(^a—i)ci+(a—J)a^=^

I
(3a—;')'c'rf='+(a—?>)°a'd^4-3acd3(3g—&)(a—6)

^—ia>cd'—8a^cH'^-{-iaVcd'>-\-8bVd'^

(3a—6)'^c^d=i+(a—

t

)^a'.£-'+2ge(;^(3a—;))(a- ji)
"*"

Aia^'—l^d^
'

_ (a—3t)'c''fl;3+(g—^)'g°'^^+2act;3(a—3i)(a—5)
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_ {Sa—b)ca-\-ya—!i)a(P (a—ib)cd-[-ia—h)ad^

_(Za—h)cd+(a—b)id^_^{a—3b)cd-\-{a—b)ad^

2ia^—b^)d^
~ " "" 2(s=—i^)d'

_ 4{a—b)cd-\-'2(a—b)ad^_ 2c+ad

ii(,a''—b')d' Ca+6)d

_ 2(a+A)cd _ c
*"" ~

2{a^—b'')d'~'(^b)d'

(24) (a;'+l)(x=4-l)(x4-l)=30x%

or, (x'+i+^T+i) {x+l)=30,

Let x4-l=s; x2+i= ( x+1 ]
'—2=s»—

3

(s2_24-s)s=30, or s^—2s+i-^=30,

s''+s'—2s==30s,

4 4

/ s^+i \ '=?^+30s

( s^+i )
+10 (

s'+i
]
+25=l^-+35s+.M

s2+l+5='!f+5
2 2

s'=3s, and s=3=x+-,
X

X

Whence a:=i(3±V5).

(25) ifi+y'=35, and a»+2/'=13.

Let x-|-y=v,

xy=z,

then u'—3»2=35 (3)

and »)=—20 =13, (4)
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2d'—6ra=70, (5) by multiplying (3) by 2

3v^—evz=S9v, (6) by multiplying (4) by 3d

v^^SQv—70, by subtracting (5) from [t

1,5—39d=—70,

t)"—39u2=—70d,
25d2=2Sv=,

V*—14d2=25d2—70u,

„4_14u2_l-49=25t>2—70t>+49,

«=—7=±(5d—7),

v'=6v, and ij^5,

or v^-{-5v=14, and t,=:-l-2, or —7

;

but «=—2z=13,

2o—2z=13, and z=6,

or, 4—22==13, and z=—|,

or, 49-22=13, and 2=18.

JVom iC-j-!/=5,) a;^3,or2,

a;j/=6,) y=2, or 3.

Froma;4-y=2, ^ a=l±iV'22

From x-fj/=—7,^ a;=—|d=W—23-.

y=I8, S y=—|=Fi V—23,

(86) Let syz^p, andi a;-f-y-l-2r=s, then the equations becomo

s

—

z
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adding, x-\-y-\-z, or s=Zs—p I i-j-1-f-I
] _

Whence s=Sj^±^S^d^,
2abc

Substituting this value of s in equations (4), (5), and (6),

we ^et ^^(«^+«c-fc)y , .

^
2abc ^ ^

^
2abc

^^^

* 2abc

Multiplying equations (7), (8), and (9) together, we find

^^ iac+bc—ab){ab+ic—ac)(ab+ac—bc)p^

wnence p=2abc I \
^^ l

,

N ({ac-{-bc—ab){ab-\-bc—flc)(a6-^-ao

—

bcp

Substituting this value of p in equations (7), (8), and (9),

we get x=l \

2afe(ac+fe-«fc)
I

^

M ((ab-\-ac—bc){ab-\-bc—acy)

I ^ 2aftc(ffi6+fc

—

ac)
}

\ l{ac-\-bc—ah){a.b-\-ac—bcp

/ 5 2abc{ah^ac—be) )

\ i(_ac-\-bc—ab){ab-\-bc—acp

(27) Dividing both members of (1) by a;', and both members
of (2) by y, we have

or, a^+i=2/ +1. (3)
a;' y

and y»+i=9(a:+l),

15
^
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root

.. «-l-i= I
x-i-- ) £/3, by extracting the cube

y \ xJ

And a;5+i= ( x+l ) tj3 by (3),
x' \ X I

dividing both members by x-\--, we have

a;=4-2+i= 5/M-3. by adding +3,

a-j-l = /3/3_)_3, by extracting the equE

root.

Similarly, x—1 = /^3— 1, by subtracting 1.

But jf+l=
(

x-\-l.
) V3=n/3^V3+3.

Whence y=i |V3.^2y3+3±^3V9—
1^

RATIO, PROPORTION, AND
PROGRESSIONS.

EXERCISES IN RATIO AND PROPORTION

Article 278.

Note.— The solutions of these exercises are given, not because tlief

are difficult, but because many of them are of a cliaracter not lierelo

fjre presented to the notice of Teachers.

(1) 3 to 4 =1 ;
3» to 4= =V ; 3= 'i?. and since V is greata

than /, the ratio of 3^ to 4^ is greater than the ratio a
3 to 4.
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(2) Duplicate ratio of 2 to 3 is 2^ to 3= = 4 to 9,

triplicate ratio of 3 to 4 is 3^ to 4' =27 to 64,

Bubduplicate ratio of 64 to 36 is ;^64 to ^36 =8 to 6,

4X27X8 to 9X64X6=864 to 3456=1 to 4 ;

Or, by canceling thus,

^X04X6_^^X0^2X2^4^.) ^g ^
4X#X^ ^X^ 1 1

(3) Let 3:= the quantity, then

n-\-x __q

m-\-x p

whence np-{-px=mq-\-qx, and x=—i—

£

p—q

(4) _=2|=| ; dividing both terms of each frartion by 3

''=4=11.

Multiplying both terms of the fractions -=|, by | we

have t*=|X4='7?=3|.
3a

3^3— V

(6) ^=5|=2_i
; dividing both fractions by ">, *=|.

Multiplying both terms of the fractions _>~- s, by |

have^Xf=|X|.org=3.

--Is-^ ' • • ^ 3+5' a+J 5

Since *=| ; .-. "=f , and^=^=|
c * h ^ b—a 5—3 -^

(7) -=4, and -=2, also 4m=7ra, and m=_

.

?7i ^ ra * 4

7re 3rem—re=—

—

n=—

;

4 4

dividing 6m by each member of this equalitv
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--6m-i—=—=8X3=14 ;

m—n 4 n

Also, dividing 5n by each member, we have

5» -=5;,X-=^=6|.

^8)

m—n 3re 3n ^

clearing of fractions 10m-l-15»=13m, or m^5n.

and —=i, or 5 to 1.

m

(9) -=l, and m=2re, also 12m=?l^;
m "• 7

dividing wi-j-ra by both members of this equality,

12m 7 24?i 24n 24?i ^

Also, since m=3^?n, 12ra=42m ;

dividing n—2m by both members of this equality, and

substituting the value of re in the second member, we have

n—2m n—2m Sim—2m 3m __ ,

1271 42m~ 42m 84m -^"

(10)
'^^~^y=6, or 7a;—53/=30y—48j:,

5y—8x

55x=35?/

lli=7y,

y =y, or X : y : : 7 : 11.
X

(11) ab:=a'—x'', or ay,h={a-\-x){a—a;) ;

whence (Art. 268), a : a-\-x : : a—x : b.

(12) x^-\-y'^2ax, or y^=^2ax—x^,

or yXy=^(2a—i) ;

whence (Art. 268), x : y : : y : 2a—x.

(13) Let x= the number, then

a-\-x : b-\-x : : c-\-x : d-\-x ;

.-. (a+x)(d+x)=(i+x)(c+x),

or, ad-\-ax-\-dx-{-x'=bc-{-hx-\-cx-\-x^.
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or, cue—hx—cx-^dx=hc—ad,

or, (a

—

h—c-\-d)x^bc—ad,

be—ad

a—b—c-)-rf'

The pupil should verify this answer by using numbers.

(]4) Let a, b, c, and d, be four quantities in proportion, and if

possible, let a; be a number that being added to each wiJ.

make the resulting four quantities proportionals ; then

a-\-x : b-\-x : : c-\-x : d-\-x.

.. (a-\-x)(d-\-x)=(b-\-x)(c-\-x),

or ad-\-ax-{-dx-\-x^=bc-{-bx-\-cx-\-x^

;

, be—ad
whence a:=

a—b—c-\-d'

But since a, b, c, d, are in proportion (Art. 267), ad=le,
.

be be n /-A 1 •oe\
•• ^=

—

-. f-r=—i 1-,="' ^^'*- ^^^) '•

a—b—c-j-a a—b—c-[-d

hence there is no number which being added to each will

leave the resulting quantities proportional.

,'15) Cubing each term of the second proportion, we have

a' : 6^ : : c-\-x : d-\-t/,

but a; : y : : a' : i'.

.-. X -.y : : c-\-x : d-\-y, by Art. 272.

Placing the product of the means equal to the product of

the e^itremes, and omitting xy on each side, we find

x=^y.
d

f 16 ) Let ma and mb be equal multiples of two quantities, i and

6 ; then since —=-, we have (Art. 263),
ma a

ma : mb : la :b

(17) Let - and _ be like parts of two quantities, a and b; then

i-;-?=_X-=- is equal to -, anJ we have (Art. 263),
n ' n n a a a

t b .1_ : - : : a : 0.

n n



174 KEY TO PART SECOND.

(18) Let a [h : : c : d, then ma and mc will be equal multiples

of the antecedents, and nb and nd equal multiples of the

consonants ; then it is required to prove that

ma : mc : : a : c, (1)

and nb : nd : : a ic. (2)

First, .—=- is equal to -, hence (1) is a true proportion,
ma a a

Second, _ =-, but since a ib : :c :d,we have
nb b

d=— (Art. 267), hence _=—i-J=_X-= ,

a b a a b "•

which is the ratio of a to c, therefore (2) is a true proper

tion. (Art. 263.)

(IQ) Since a :b -.-.cvd, .-. -=- (Art. 263) ;
a c

. ,. mb b , Tul d ., ,
but —=-, and —=_, therefore

ma a iia c

ma :mb::nc: nd.

Again, if we take the equation -=-, and multiply bcth
a c

sides by _, we have ^=— , which gives the propor-
nh nd

m ma mc

tion ma : nb : : mc : nd, (Art. 263).

(30) Since a:b::c:d, .: -—^, (Art. 263) ;

a c

but l-^1=^x'^=i and ^H--=-X^-,m m m a a n n n c c

. a _ b
_
_c ,d

mm n n

Again, if we take the equation -=-, and multiply botli
a c

u , m , . mb mdmembers by _, we have =_
;

n na nc

. , . mb b , a , md d c ,. ^ . ., . .abut ——-—-, and —=_-;— ; that is, the ratio of —
na n m nc n m m

to - is equal to the ratio of — to -, hence
n m n

a , h
, , c . rf

m n m' n
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(21) Let a lb: -.c -.d, (1)

and e if : Iff ih, (2)

from (2) by Art. 271,/: e: :ft:^, (3)

multiplying together the corresponding terms of fl) and

(3) (Art. 277), we have

of : be : : ch : dg,

, be dg
whence _=.£,

af ch

but %=lx'-=l-^^-, and ^|=^X?=f-*-i ;

<if J " J ^ en h c h g
b . a d , c

f e h ff

whence (Art. 263), --.l-.-.i:-
e f ff h

(32) Let us take the two proportions

a : b : : c : d, (1)
'

and ma : e : : mc :/, (2)

in which the antecedents are proportional, since

a ic : : ma : mc ; then it is required to prove that

b:d::e:f.

By alternation (Art. 270), proportions (1) and (2) give

a : c : '.b : d, whence -=-,
a b

and ma : mc : : e : f, whence — , or
ma a e

.• -=-, or b -.d : -.e-.f.
b e

(23) Let a and b be the antecedent and consequent of a ratio,

and n any given number, then it is required to prove that

fl±- : J±- : : a : J.

n n

, fl__ nadza

\ n I n n \ n I

n

^a
I

"
I ^-, and since this is the same as the ratio

\ n I a

n

the ratio of the first term to the pecond is 6 [
_=-

J
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of Ihe third term to the fourth, the proportion is uue
(Art. 263.)

(24) Developing (a-j-i)' and (a

—

by, we have

a'+2oi+i' : a^—2ab-\-h^ : : i+c : b—c,

whence (Art. 275), 2a^-\-2b^ i 4ab : : 2b : 2c,

or (Art. 267), 2c(2a^+2b^)=iabX2b=8ab^,

or, 4a^c-{-ib^c=8ab''

,

or, a^c-j- Vc=2aV,

or, a%=2ai^

—

b''c=i^(2a—c).

.-. (Art. 268), a' : 62 : : 2a—c : c ;

by extracting the square root of each term TArt. 276), we

have a :b • : J2a—c : Jo,

Article 279.

l3) By Art. 275, the proportion gives

2x-2y : • i-2,or ix^Sy, or x=2y.

By substituting the value of x in the equation i:'- ]/'=66

we have {2yy—y^:=b6,

reducing, 7y'=66 ; whence y=2, and x=4.

(4) From Art. 274, the proportion gives

X—(x—y) : X : : 6—5 : 6,

or,y • X : • 1 : 6,

whence (Art. 267), x=6y.

By substitution the equation becomes 6yy.y-=SSi ;

whence i/=4, and a;=24.

(5) By Division (Art. 274), the proportion gives

x-\-y—X : X : : 7—5 : 5,

or,y:x:: 2 : 5,

whence x=^-2.
o *

Ev substitution the equation becomes -i--|-?/'^126
,

wluMic.o «=-L:6, and a;=rtl5.
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6) Extracting the square root of each term of the propor-

tion (Art. 276), we have

x-{-y : X—y : : 8 : 1

,

(Art. 274), '2x: ^y : : 9 : 7
;

whence x^-M :

7

substituting this value of x in the equation, we have

-^=63, whence y=:±'7, and x=±9.

(7) Writing b in the form -, the equation gives the proportion

a-\-Ja^—x^ a—V"^—•' : 1 : i,

b+1 : 1—J,(Art. 275), 2a : 2ja^—x^ :

or, u : ija^—x^

(Art. 276), a^ : a?—x'^

i+1 : 1—i,

(i_(_l)2 : (i_J)2.

But, by means of Art. 274, it may easily be shown that in

any proportion the first term is to the difference of th

first and second, as the third term is to the difference oi

the third and fourth ; hence, .,

a? : a'—(a'—x^) : : (b+iy : (J+l)'—(6— 1)=

or, a2 :a;2:: (6+1)2 :4J,

whence x\b-\-'[y=ia^b,

(6+l)=_

^^ 2ajb

b+1-

. 8) The equation gives the proportion

Ja-\-x-\-^a—X : Ja-\-x—Ja—x : b : 1,

(Art. 275), 2^a+x : 2^a—x : : 7)4- 1 :b—l,

CArt.276), a+x : a—x : : (6+1)^ : (i— 1)',

(Art. 275), 2a: 2x : : 2J=+2 : 4b,

or, a: x : : V+l :2b,

whence x= .

(9) The equation gives the proportion

a-\-x-\-j2ax-\-x'' a-\-x :b :1,
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(.Art. 274),

(Art. 271),

(Art. 276),

(Art. 274, Note;
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VAKIATIOH

Article 290

Note.— The solutions to these examples are given for the same reason

as those following Article 278, not because thev are diiTicult, but

because to many Teachers they will be new.

8"* Since y varies as x, let y=:mx, then since .. x^2, y='ia,

we have 4a=2m, or m=2fl,

. i/=2ax

(4) Since y varies as -, let y=— , then since if x=h v=8
X OS

we have 8=— or m=4.
1

2
4

••• y=-.
X

5) Let j/'=:m(o'—a'), tlien

_=ml/', or m=_ ;

0= a=

.•. «2_._^j(3—a:'), and j(=_»/a2—a;^.

a^ a

(6) Here we have y=v-\-z, where vcnx, and zee—

Let v=mx, and z=— , then 2/=mK+—
.

Since y=Q when a;=l, we have 6= m+w, (1)

and " y=6 when a;=2, " " 6=2m+-. (2)

From equations (1) and (2) we readily find ot=2 ana

4
71=4, hence y=2x-\--,

x'

(7) Here we have y^a'\-v-\-Zi where a is constant, vdx, and

zo^x''. Let v=mx, and z=nx''

then y=:ffl-)- mx-1- «'^^-

• 6=a-l- m -\- n, (1
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ll=a+2m -j-4n, (2)

]8=a-l-3m -\-9n. (3)

From the equations (1), (2), (3), by elimination (Art. lo8),

we find (2=3, m=2 n=l hence,

y=3~{-2x-l[-x'.

(8) Since so:t^ when_ is constant; and so; when t is con-

stant, therefore, when both Tar' B evident from Ar*

283 (3), that safi' ;

then let s^mff ;

but since 2s=/, or s=^when /=1, therefore

if=mfl\

whence m=\,

and s=lfp.

(9) Since roc x, let r=nx,

and since sx^x, let s^-^n^x.

then i/^7nx-\-iijJx ;

hejice, by substituting the corresponding vahies of y and

X, we have

5=4m-l-2n, (1)

10=9m+3n. (2)

From these equations we find 7?j=g and n=|,

hence y=^x-{-^Jx=^(x-\-^x).

(10) Let x:=±-, and ij-
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^t X we ought to find y=5, or if we substitute 9 for t we ouglit

•"o find y^lO.

Die subject of Variation is of considerable use in Natural

Philosophy, and though not quite so easily understood as the

other parts of Proportion, is worthy the careful study of the

learner.

AKITHMETICAL PKOGRESSION.

Article 294 .

Note.— The learner who wishes to understand tlie subject thoroughly

should derive each of the formulce on page 245, by talcing the two

tquations at the beginning of this article, and finding from them the

'-ralue of the quantity marked " Requi.ftv. We shall illustrat*" the

method of doing this by the solution of two of the most difficult cases,

Nos. 2 and 14.

Formula 2. Talking the equations

Z=a+(re— l)d, (1)

and S=(a+0-, (2)
2

we have given a, d, and S, and it is required to find /.

The first step is to eliminate n. This may be done by finding

die value of 7i from each of the equations, and putting these

»a ues equal to each other.

Eq. (1) gives n=—_2^=_-+l,
a a

eq. (2) gives ra=—— ;

l-\-a

clearing, V—a'^-\-dl-\-ad=2dQ,

pj^dl-\--=1dS,-{- i a^—ad+- \

=2dS+{a—ldy,

l+i=±Jl2dS+{a—ldyi,

i=-ld±jms+(.a-ldy^.
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Formula 14. Here we have the same formula;, and the same

ouantities a, a, and S given, to find n.

Finding the value of I in equation (2), and substituting it

, / ,N 7 2S

—

na
a (\\ we have a-\-{n—l)d= ,

n

, . 1 2 1

2a—(i„ 2S
clearing and reducing, ra=+—y-»=-y>

whence ,^^J^^^^z±^.

Ex. \\Q) Here d=

—

\, and we have given a, d, and n. to find

S ; we, therefore, use formula 5, whence

S=ln\2a+(n—l)dl=lnl26—{n—l)il

=ln)18—(n—l)] =ln(19—n).

ni) Here d=—g, and a, d, and n are given to find S.

S=inJl-|(n-l)j=J2»l6-7(»-l)|=iL(13-7n).

'12) Here a= , and we have a, d, and n given to find S,
^

a-\-b

Substituting in formula 5, we have

=Ai—*-'i-.T. i"'-^t

(13) Here d=—-, and we have a, d, and n given, to find S.

n

S=i. jH^^=±)-l(n-l)S =jn f-=l(
* ( re n > ~ ( n >

m—

1

(14) Here 0=16^,, (^=167^X2=32^, and n=30, to find I

and S.
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Formula 1 gives Z=I6J2+(30—1)32^=948}^.

S=(Z+a)-=(948j^.+16^i2)3j^o=14475.

(.15) Since there are 200 stones, there are 200 terms, increfore

»=200 ; and since the person travels 20+20=40 /ards,

or 120 feet for the first stone, therefore a=120. And
since the stones are 2 feet apart, he must travel oyer

twice this distance to reach each successive stone, there-

fore the common difference ^=4. Applying formula 5 to

find the sum of the series of which the first term is 120,

the common difference d=4, and the number o;' te/ma

n=200, we have

S=2g5j2(120)+(200—1)4|=100(1036)
=103600 feet =19m. 4 fur., 640 feet.

^^17) Here a=3, 6^18, and m=4,

p= -=—^_:=3, hence the means are
'^ m+1 4+1
3+3=6,9, 12, 15.

(18) Here a=l, i=— 1, and m=9,

J h—a — 1— I 1a= = =

—

^,m+1 9+1 ^

(19) Here a=:19, d=—2, and S=9l ; and it is required to

find n, which may be done by formula 14,

where
„=±^A2^=d)H:!^S--2a+d

2d

hence .^±^(38+2)^-16X91-38-2
—4

_±12—40__|_3_j_jQ__j_j3^ or +7

Hence, the sum of either 13 terms, or 7 terms, wil. oe equa. to

'il. To explain the reason of this let the first thirteen terms of

the series be written thus,

No. of term, 1 , 2 , 3 , 4 , 5 , 6, 7, 8, 9, 10, 11, 12, 13,

terms 19, 17, 15, 13, 11, 9, 7, 6, 3, 1, —1—3 -5
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Here we see that the sum of the first 7 terms is 91, and tlip

reason that the sum of 13 terms is the same, is owing to the fact

that the sum of the last six terms is zero, the sum of the positive

and negative quantities b^ing equal to each other.

(20) Here a=.034, (Z=.0344—.034=.0004, and S=2.''4l

Substituting these values in formula 14, we have

^^±^(068—0004)'+.0087936—068+.0004

±.1156—.0676
-60.

.008

(21) Let a;= the first term, and y= the common difference

then x-\-y= second term, and x-{-x-\-i/=2x-\-y=^4:

;

fifth term =a-|-(re—l)i=x+(5—l)y=a;-t-4y=9.

From these equations we readily find x=l and y=2, hence the

series is 1, 3, 5, 7, 9, &c.

(22) Let x= the first term, and y^ the common difference,

then the series is

X, x-iry, x-Jf-2y, x-\-3y, a;+4y,

whence x-\-(,x-\-y)=2x-\-y:=lS,

and {x+2y)-{-(x+3y)-\-(,x-\-4y)=dx+9y:=12.

From these equations we find a;=:10, and y=—2. It is now
required to find n, having given the first term =10, the common
difference —2, and the sum of the series 28.

„ , ,. . ±>/(20-l-2)—448—20—

2

Formula 14 gives n= ^ ^
1—

i

_=F6—22
—4

=q=li-|-5-i=4, or 7.

The series is 10, 8, 6, 4, 2, 0, —2, &c.

Here we readily perceive why the sum of 4 terms is the same

as that of 7.

(23) In this example we car readily find the. first, second, iSw,

terms by making n=l, 2, 3, &c.

Let ?t=l, then 1" term =i(3—1)=J,
" n=2, then 2'"' term =^(6—1)=-'*.
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f]— ;^
=|=j= the common difference.

Sum of n term =H+^(3?i-l)?|=a«+J)|

(.24) Here a=l, and (i=2, to find the sum of r terms, and also

of 2r terms.

From formula 5, we find the sum of

r terms =i?-j2+(r—1)2|=H,

of 2r terms =:Jx2r)24-(2r—])2^=4r'.

.-. 4r' : r' : :x : 1,

whence r'^x=ir'', and a;:=4.

(25)

The sum S of n terms =^ra!2ffi+( nr—\)d\=an-\-\n'^(l—{nd.

The sum S' of 2m " =—J2a+(2n—l)d|=2ara+2ray—nd;

Sum of 2ra terms — sum of m terms, or the) ^^anA-inH "^nd

second half of 2ra terms. )
a a

Sum S" of 3ra terms =^]ia-{-(Zn—\)d\=ian^ln''d—^,nd.
A

Zan^-lnH-\y,A_^ the required ratio.
an-\-'in'^d— \7id

This is an interesting general theorem, which the pupil should

illustrate by numbers ; thus, if we take the series 1, 3, 5, 7, 9;

&c., the sum of the second 4 terms is 48, and the sum of the first

12 terms is 144, being 3 times that of the second half of 2n terms

n being 4.

(26") 2^-=.d, l4-_ii-=-il^= 1" arithmetical mean.

„+(._l)d='H^9 ._ iL=L9gi= .'^ term.^ n+1 «+l «+l

„+(„_2-l)i=-+L9+(._2-l)JJ.-=l^^
' ' n-j-l 71+1 w-f 1

=(w—2) term.
16



180 KEY TO PART SEUOND.

/ 19n+l ^^+19 \ »_10n!+10«_jo»= sum of n terms

/ 19ra—35 ,*7J+19 \ (ra—2)_10?t^—28n+16
\ ra+1 71+1 / 2 »+l
= sum of (n—2) terms.

m+1

whence 30»=5_2^!=li5^+LO,
ra+1

or 30»2-[-30m=507i2— 14072+80,

reducing, 2ra^—17?2=—8, whence 7i=+8.

(27) Let x= the number if days the first travels before he is

overtaken by the second. It is then required to find tne

sum of X terms of the arithmetical series whose first term

li, is 1, and common difference d=:l.

S=i7i|2ffi+(ra—iy|=-|2+(x—l)}=|a;2+|a;.

The second travels (a;—5) days at the rate of 12 miles a day

Fence the whole distance he travels is represented by 12(x—5).

•• 2J:'+ia:=12(x—5),
or, x'—23a;=—120.

Whence a;=8 or 15.

and X—5=3 or 10.

.•. the second travels 12X3=36 miles,

or 12X10=120 miles.

The second traveler overtakes the first at the end of 3 days,

when each has traveled 36 miles ; the second then passes the

first, but as the first increases his speed each day, at the end of

the 10" day he overtakes the second and they are thus twice

together,

Tli's example furnishes a beautiful illustration of the mannei

In which the different roots of an equation correspond to th«

ievei&l circumstances of the problem.
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GEOMETRICAL PROGRESSION.

Article 300.

NorE.^AU the formuIiE in this Article are deiived (rom tlie two

equations

Z=a;-"-

,

(1)

and 8^"Jl^=±=^, (2)
r— 1 r—

1

by supposing any three of the quantities to be known, and then finding

the values of the other two. In general, the formulse are very easily

found, but where n is large the resulting numerical equation is hard to

solve, and can only be uuderstood by the learner, after he becomes ac-

quainted with the numerical solution of equations, as contained in the

Algebra, Articles 428, to 444. After the pupil becomes acquainted with

e.\j>onential equations, Articles .382, 383, he will find no difficulty in

obtaining the last four formulcB, 17 to 20.

To illustrate the method of finding these formula3 from the two

preceding equations,we shall find I, formula 4.

From (1) a= ,

" (2) a—rl—S(r—l).

Placing these values of a equal to each other, we fin 1

y_ S(?-"+?-"-')^ ,r— 1)S-"-'

(.1) r=2, ?'"-'=2'=128
; ffir''-'=5X 128=640.

(2) r=l, r'-'=(|)==5'j ; ar'-^^diXl 7
4— s a •

5=? ».n-l—c5^5_J-2.
(3) r=2.|^3|=f, r"->=(|

(4) '= JT 3' (.

—

3) —liV 72SX -il 27(3.

on—

1

on— 1 on—

S

(5) ,-=J_-i-l= ?, r"-'=(|)"-'=l- ; ar"-'=iX—=~.
^ «* -^ ' 3 z ^z^ 2"~ 2"~* 2*

^10) r=3, and Z== vf" term =1X3"-'=3-'-',

^_rl—a_ZX 3-1—I^ 1 -3„_-, .

r—\ 3—1 -
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I 11) Here r=—2, and I, or »"' term =1X(—2)»" '==F2"-
according' as n is odd or even.

r—1 —2—1 ^

W—a_—2X(=i=2"~')—

1

^1 ^

' 12) Here r=—1^, and Z, or »" term =x (
—^ )

—!/

?•—

1

-M^. ^(-f)"-^

-^-1
-?^-l

\ xl _ \ xl ___^L_/'_J/\"?
a;-|-»/ x-{-i/ ^-\-y ^ ^ .-c / '

(13) Comparing the given quantities witli tliose in formula 131

we have a:=4, /=12500, and ?i=6, to find )-.

^_W-a_1250QX5-4_^p^g^
?•—

1

5—1

(14) Let x= the 1" term, and !/= the ratio, tlien x, xtj, an2

a;^' represent the first three terms, and

a;+a;y=9, (1)

a;+X!/'==15. (2)

From these equations wo readily find y=2, or —|,

hence x=i, or 13l ; therefore the series is

3, 6, 9, &c. ; or, 13!, —4!, -\-\\, &.C.

(15) Here a=';r, and )=;; ; S= = _i_=
1— )• 1— I
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(16) Here a=9, and r=| ; S=— =-=27.

(17) Here b=6 and ?•=»
; S=-A =?=9.

' ^ 1 1 2
3 S

(,18) Here o=|, and r=—^ ; S=-l-=f

(19) Here a=100, and r=| ; S=i^=l?2=16t)|.
5 5

(20) Here a=a, and r=- ; S= =
a . ^6 a—b

a

(21) If we begin at the second term, the series is a regular

geometric series, of which the first term is 2a, and the

ratio r=a, hence the sum of this series is Then,
1

—

a

adding 1 to this, the sum of the series l-\-2a-\-2a'-\-2a^-\-,

&c., is 1+_?^=L=?+^^=1±?
1

—

a 1

—

a 1—a 1

—

a

(22) Let x= the !•' term, and y= the ratio, then

x+xy=2^^, and S=3=_^, from the formula S=_?_
1—

y

1

—

r'

From these equations we find 2/=-l-|, or —j, and a:=2

or 4 ; hence there are two series, the first being

2+f+f+, &c.,

and the second 4—1+|— , &c.

25) Here m=2, and ?•=•»+ i/-=s/^=:=s^!y=|.

• 37X|=|, and |xi=3, are the means.

C26) Here m=7, and ?-=VJ-^|^^=1 /V6561=V81=3.

.-. the means are 2X3=6, 6X3=18, &c.
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Article 301.

OlECULATING DECIMALa

.,. „ 63 63 1 1
II) Here a=

—

=— ,r—=—

,

100 10= 100 102

g_ .63 _.63 63_7

T-h -99 99 11

Or, thus, S= .63636363.

1008=63.63636363.

998=63.

(2) Here S=.54123123123. .

1000008=54123.123123. .

1008= 64.123123. .

999008=54069.
'

Q 54 009 J 8023
•=>—l^'SOD 3 3 3 0-

HAHMONICAL PR0SRESSI05.

Article 303.

(3) Inverting the terms 3 and 12, they become | and ^2-

Let us now insert two arithmetic means between | and Yi
and the reciprocals of these will be the harmonic means between
3 and 12.

8ee example 16, page 246. 0=73, l=J, and m^=2
;

^—<^—i—7\— 3 ^3=J
m+l 2+1 '^ '^'

YT5-|-y3=f2=^Bi hence 6 is one of the harmonic means
;

g+7o=:T2^.i! hence 4 is the other harmonic mean.

(4) 2 and 5 inverted become ^ and 5. Let us now insert two

arithmetic means between 2 and 6.

/)—

a

_6—l_jj •

m+l 3" ^'
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!,-\-ll=:2, hence I is K,ne of the harmonic means,

2-1-1 '=31, hence -1=3 is the other
• J. 2 3',-

(6) I and yj inverted become 2 and 12, let us now insert 4

arithmetic means between 2 and 12.

= =1 0=2, hence we have for the arithmetic
m-\-l 4+1 **

means, 4, 6, 8, 10, and for the harmonic means,

1111
4' B' B' To-

(,6) Since li, h, c, are in arithmetical progression, we have

a—b=b—c ; and since b, c, d, are in hiirmonical progres-

sion, we have _, -, and - in arithmetical progression.
he d

1_1_.1_1
c b d c

or, by reducing the fractions on eacli side to a common
denominator.

b—

c

c

—

d

be cd

,^. , . , b—c c

—

d
multiplying by c, = .

b d

hence (Art. 263), b : b—c : : d : c—d,

but b—c=a—b, .. b : a—b : : d : c

—

d,

by Inversion (Art. 271), a—b : b : : c—d : d,

by Composition (Art. 273), a ib : : c : d, whi'-h W8»

required to be proved.

PROBLEMS IN ARITHMETICAL AND G 1. O * , T •

RICAL PROGRESSION.

Article 304.

(8) Let X—y, x and x-\-y, be the numbers,

then a;

—

y-\-x-\-x-\-y=ix=Zi), anda;^10,

also, (x—y)2-}-ar2-[-(a;—y)==3a;24-2y2=308.

By substituting the value of x we find y=:i, hence

X—y=S, a;=10, and a;-)-y=12, are the numbers.
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(4) Let X—3y, X—y, x-\-y, and x-{-Zy, be the numbers,

then X—'iy-\-x^-\-x-{-y-\-x-\-Zy=Ax=2Q, and a;=6j,

also, (a;—32/)(a;+3y)(j;—y)(a:+!/)=880,

or, (.j;^—9i/2)(a;2—!/2)=880,

or, a;"—10a:22/2_[-9y=880 ;

substituting the value of a;, and reducing, we find j/^| '

henqe the numbers are 2, 5, 8, 11.

(5) Let x= the first term, and y= the ratio, then x, xy, xy^

represent the terms, and

a;+a3/+a^==31, (1)

x-\-xy : x-\-xy'' : : 3 : 13,

or, ^±iy_ =IiX=i! (2)
'

x-\-xy l+y 3

From (2) we find y=5, and by substituting this in (1), we find

1=1 ; therefore, the numbers are 1, 5, and 25.

(6) Let X—y, x, and x-f-y, represent the numbers, then

(a:-]/)2+x=+(x+y)2=3x=+2!/2=83, (1)

x^—(x

—

y){x-\-y)=x^—(x^

—

y'')=y'i=4. (2)

Prom (2) y=2, and by substituting this value in (1), we find

x=5 ; hence the numbers are 3, 5, 7.

(7) Let X

—

3y, x—y, x-\-y, and x-4-3j', represent the numbers

then (a>-3y)(x+3!/)=x2—9y'=27, (1)

(x— yXx+ y)=x^— 2/==35. (2)

Prom these equations we easily find y=l, and x=6 ; hence

the numbers are 3, 5, 7, 9.

(8) Let X

—

y, x, and x-\-y, represent the numbers, then

(x—^?/)-|-x+(x4-y)=3x=:18, and x^6
;

also, 2x

—

2y, 3x, and 6x-{-6y are in geometrical progression

.-. 2(x—)/)(x+y)6=9x2,

or, 12(x'—!/2)=9x2,

whence 2y=x, and y=3,

therefore the numbers are 6—3=3, 6, and 6-(-3=9.

(9) Let X— 1, X, and x-|-l, represent the numbers,

then (x- l)i+x''-f(x+l)''=3x'+12x2+2=962
;

whence x=4, and the numbers are 3, 4, 5.
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CIO) Let X— 3;/, X—y, x-\-t/, and x-\-Sy, represent the numbers,

then {x—-iy){x—y){x-L-i/) (,x+3y)=(x—3y) {x-\-3y){x—y)

But since the common difference between the iMimbers is 1,

therefore 2^=1, and y=:A ; substituting this value of y and

reducing, we find x=bh ; hence the numbers are 4, 5, 6, 7.

(11) Let 1,—Zy, X—y, x-\-y, and x-\-Zy, represent the three

numbers then

(a;—32/)(x—!/)(a:4-2/)(a;4-3^)=a;''— 10a;23/2_j_9y4__280, (1)

and(x—3j/)24-(a;—y)2+(a;+!/)2+(x+3!/)2=166,

or, 4a;2+20i/2=166, (2)

.-. x''=2i\\—by^.

Let 41 ^=a, then x''=a2~10aj/2-|-25y'.

Substituting the values of x* and x' in equation (1), and

reducing, we have

842/"—830!/==— '^"V-".

Whence J/=l2, and by substitution a; becomes 5^, whence
the numbers are

5'—3(l-i)=], 5i—U=4, 5^+li=7, &c.

(12) Let X—iy, x—Sy, x—2y, x—y, x, x-\-y, x-\-2y, x-\-3y, and

x-\-4y, represent the numbers ; then their sum =9a;=45,

whence x^=5 ;

also, the sum of their squares =9a;2-j-60i/==285, from

which, by substituting the value of x, we find 3/=! ;

hence the numbers are 1,2, 3, &e., to 9.

(13) Let X—3y, x—2y, x—y, x, x-\-y, x-\-2y, and x-\-3y, repre-

sent the numbers ; then their sum =7x^35, whence x=5
also, the sum of their cubes :='7x^-\-84xy^=i295, from

vrhich, by substituting the value of x, we find y=l ,

hence the numbers are 2, 3, &c., to 8.

(14) Let X and y represent the numbers, then

2
^

or, x-\-y : 2^3cy : : 5 : 4,

(Art. 276), x2+2xy+3/= : 4xy : ; 25 . 16,

17
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CArt. 274, Note,) x^—ixy-^y'^ : x^+Siy+y^ : : 9 : 25,

(Art. 276), a;—y : x-{-y : : 3 : 5,

(Art. 275), 2a;
•

2y : : 8 : 2,

o>, a; y : : 4 : ]

.

This theorem may also be proved oy multiplying together the

BT^anp and extremes of the first proportion and finding the value.

it X in terms of y, by which we find x=^y or {y.

The converse of the preceding proposition is also true ; that is,

if one of two numbers is 4 times the other, then their arithmetic

mean is to their geometric mean as 5 to 4. Thus, let a and 4a

be two numbers, then 2^a is their arithmetic mean, and 2a their

geometric mean, and 2^a : 23 : : 5 : 4.

(15) Let x^, xy, and y'^, represent the numbers, then

^'+^y+y'='7, (1)

i+-+-=!• (2)
x' xy y'

Multiplying both members of equation (2) by x'^y'^, we

have x''-\-xy-\-y'^='lx''y'', (3)

.-. |a;^)/^=7, whence x^y''=4, and xy=2.

Substituting the value of xy in (1), we find x^-\-y^=5

then from this, and xy^=2, we readily find j;=2 and 3/=!;

hence the numbers are 4, 2, and 1.

(16) Let ^, a;, 2/, and ^, represent the numbers,

y ^

then ^l-\-y =10, (1)

y

a:+^'=30. (2)
X

Clearing these equations of fractions, by multiplying ^Ij

by y, and (2) by x, we have

x'^-\-y''=\'iy, and

whence 10!/=30a:, and y=3x.

Substituting this value of y in either of the equations (1) and

f2), wc find a:=3 ; hence y=9, and the numbers are 1, 3, 9, 27.
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f 17) Let X, xy, xy^, xy^, be the numbers ; then

x-\-xy^^Zb, and xj/-)-a;j/'=3C.

Dividing one equation by the other ;

xy-\-xij^ 30 y+2/^ 6'

But 1+2/' is divisible by \-\-y, and y+!/'=y(I+y}

._.
i+]/^_(i+y)(i—y+.v')_i—y+y'_7 .

y+y^ yi^+y) y
6

'

whence 6^'—13i/=—6, and^=| or f.

And x=-^=8 or 27.
y+y"

Hence the numbers are 8, 12, 18, 27.

118) Let X, xy, xy'', xy', be the numbers when increased
;

.. X-—2, xy—4, xy'—8, xy^— 15 are in arithmetical pro

grassion ; hence 1" + 3"' = 2"'' X2 ; and 2"^ -\- 4'* =•

S'" X2 ;

... (x--2)+(i^'—S)=^2(xy~i) ;

or, x—2xy+xy'=2 ;
.-. a;(l—2y+y-)^2, (1)

also, (xy—4)+ixy^—\5)=2{xy'—8) ;

or, xy—2xy'-\-xy'=3 ; .-. a:j/(l—2y+^')r-=3. (2)

Dividing equation (2) by (1), we have

xy(l~2y+y')^Sory=?,
x(l-2y+y') 2

whence a;(l—3+|)=2.
.•. x=8, xy='l2, xy'=18, and a7y'=27

;

and subtracting 2, 4, 8, and 15 from these niinjbej-s, th«

remainders 6, 8, 10, 12, are the numbers required.

(IS) Let X, xy, xy^, be the numbers,

then a;X^i/X^^=^y=6'ii

a^=s/64=4
;

also, x^-\-x'y^-\-x'y^=584:,

a;3_[_a;3,/6=g84_a.y=520.

From the equation xy=4, we have x^- ;

V
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substituting this value of x in the last equation, we haye

^-j_64y'=520.

dividing by 8, l+83/'=65 ;

clearing, 8y^—65y'=—8 ;

v?hence (Art, 242), !/'=8 or J, and y=2 or j

.•. «=2 or 8, and the numbers are 2, 4, 8.

PERMUTATIONS, COMBINATIONS, AND
BINOMIAL THEOREM.

Articles 305— 309.

(1) (Art. 306), Pj=»(re—1)=5(5—1)=20 ;

Pj=K(ra_l)(re—2)=5X4X3=60 ;

P^=?i(ra—l)(n—2)(ra—3)=5X4X3X2=12'J

(2) (Art.308),C.=»g)=g.^=10;

Q _n(?t—l)(m—2)_5X4X3_^Q .

' 1X2X3 1X2X3

Q ._w(m—l)(m—2)Cb—3)_5X4X3X2_.g .

* 1X2X3X4 1X2X3X4
n _n{n—'i){n—2)(n—3){n—4)

1X2X3X4X5
_5X4X3X2X1_,
1X2X3X4X5

(3) (Art. 306a), P,=P3= 1X2X3=6.
Thus, NOT, NTO, ONT, OTN, TNO, TON.

Ps=lX2X3X4=24.

(4) This is a case of permutations, when all the letters sre

taken together (Art. 306a).

•• P6=1X2X3X4X5X6=720.

(5) This is similar to the preceding.

.-. P,=1X2X3X4X5X6X7=5040.
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(6) Tlie whole number of arrangements is evidently equal to

the sum of the different permutations of six letters taken

1 together, 2 together, and so on

P,=7l= 6

Ps=n(ffl—1)=6X5= 30

P3=:n(TO—l)(?i—2)=6X5X4= 120

P,=n(n—l)(n—2)(n—3)=6X5X4X3= . . . .360

Pj=n(?i—I)(n—2)(n—3)(m—4)=6X5X4X3X2= . . 720

P ,=n{n— 1 )(re—2)(re—3)(ra—4)(n—5)=6X5X4X3X2
Xl= 720

Ans 1956.

(7) Here the number of different products will evidently be

equal to the number of combinations of 4 things taken 2-

together.

. c _"("— 1)^4X3^^
' 1X2 1X2

Let the learner verify this result by finding the different prod-

acts ; they are 12, 15, 18, 20, 24, 30.

(8) Here it is merely required to find the number of combina-

tions of 5 things, taken 3 together.

. Q _7!(n—l)(n—2)_5X4X3_jQ
'

1X2X3 1X2X3

(9) The number of permutations of n things, taken 4 together

is P4=n(re—1)(«—2)(n—3) ;

taken 3 together, is V ^=n{n—l)(n—2) ;

. . n{n—\){n—2)(n—3)=6ra(n

—

\){n—2) ;

dividing each member by n{n— l)(ra—2), we have

n—3=6, or n=9.

llO) By Art. 306, the number of permutations of 15 things

taken r together, and r— 1 together, is

P, =15X14X13X12- • . • (15—»•—2)(16—r^),

P,_,=15X14X13X12 (15—r—2).

Here we see '.hat the two quantities are the same, except

the last factor of the first quantity, which, by the terms of tho

question must therefore be equal to 10 ; that is.
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10=15—?—!,

whence r=6.

Thus the permutations of 15 letters, taken 6 together, are

15X14X13X12X11X10, and the permutations of 15 letters,

taken 5 together, are 15X14X13X12X11, whence it is readilr

geen that the former is equal to 10 times the latter.

(11) Ci=n= 4

C —"(^—1)^4X3^ g
' 1X1 1X2

C —"("— 1)('»—2)—^X3X2 _ 4
' 1X2X3 1X2X3

^ _n(n—\)(n—'r){n 3)^4X3X3X] _^ j
* 1X2X3 1X2X3X4

Atis. 15.

The learner may easily verify this result by taking the coins,

or by finding the different sums that can be formed of the numbers

1, 3, 5, 10 ; the sums are

1, 3, 5, 10 ; 4, 6, 11, 8, 13, 15 ; 9, 14, 16, 18 ; 19

(12) Here it will be necessary to find the different combinations

of six things laken singly, two together, three together,

four together, five together, and six together.

C,=ra= 6

Q _«X(«—1)_,6X5^ j5
' 1X2 1X2

(. _?i(n—l)(re—2)^6X5X4^ 20
' 1X2X3 1X2X3

—"("—^)("—^)('^—3)—6X5X4X3_ jj
''*

1X2X3X4 1X2X3X4

p _?i(w—l)(n—2)(m—3)(w—4)_6X5X4X3X2_ _ g
' 1X2X3X4X5 1X2X3X4X5

p ^n(w—l)(n—2)(TO—3)(??.—4)(??—5)^6X5X4X3X2X1^ j
• 1X2X3X4X5X6 1X2X3X4X5X6 _

Arts. 33.

In this solution we notice an illustration of the principle of

Art. 309. Thus the number of conihiniitions of 6 things, taken

1 together, is the same as \iben taken (6-— 1), or 5 together ; the
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^l^mber, when taken 2 together, is the same as when taken

(6—2), or 4 together.

'13 He may vote for 1 candidate only, or for any 2, or for any

3 ; hence the whole number of ways in which he can

vote will be equal to the number of combinations of four

things taken singly, of four things taken two together

and of four things taken three together ; thus,

Ci=re= 4

^^^TO(ro—

1

)^4X3_
g

1X2 1X2

r;^^w(w—l)(?i—2)^4X3X2^ 4
1X2X3 1X2X3

Total number of ways = 14.

(14) If we reserve a, and take the different combinations of

the four remaining letters h, c, d, e, taken two together, we
may then unite a to each of them, hence the required

number will be obtained by finding the diiTerent combi-

nations of foU7- letters taken two together.

Cj=_ =.2-^^6 ; and the combinations are
1X2 1X2

abc, abd, abe, acd, ace, ade.

(15) A different guard may be posted as often as there are dif

ferent combinations of 4 men out of 16.

n,—"fa—l)(n—2)(re—3)^16X15X 14X13^^ggri
1X2X3X4 1X2X3X.4'

To find the number of times any particular man will be on

guard, it is merely necessary to find the different combinations of

(4—1)^3 men that can be formed out of (16—1)=15 men, since

.he reserved man may be combined with each combination of 3

men, giving a combination of 4 men.

^^_TO(7i— l)(?t—2)_15X 14X '3_^55
1X2X3 1X2X3

(16) 04="-^-'^^"--̂ ^^"-^^

1X2X3X4
n(n— 1)Ue ,

1X2
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w(m— l)(ra-3)(w—3) . w(w— 1) . j^ . ^^

1X2X3X4 1X2

I'Art 9fi7v 2w(re—1)(to—2)(m—3)_ 15?i(m—1^
'

'

'

1X2X3X4 1X2

Dividino' both members by ^ •',^
1X2

2(m—2)(m—3)_^g
3X4

reaucing, ?i^—5ra=84, and 71^12.

(17) To find the number of peals that may be rung with 5

bells out of 8, find the number of different combinations

of 5 things out of 8, then each combination will give as

many changes as there are permutations of 5 bells, and

the whole number of changes will be equal to the number

of combinations multiplied by the number of permuta-

tions in each combination.

C _w(w— l) (w—2)(ra—3)(m—

4

)_8X7X6X5X4_pfi .

'
1X2X3X4X5 1X2X3X4X5

Pj=lX2X3X4X5=120;

56X120=6720.

The number of changes with the whole peal will evidently be'

equal to the number of permutations of 8 things taken all

together.

P,=1X2X3X4X5X6X7X8=40320.

(IS) Had the letters been different the number would be

P,=1X2X3X4X5X6X7=5040 ; but there are 2 a's,

and therefore (Art. 307), we must divide by 1X2 :

.5040-^2=25L!0. Am.

(19) Since tliere are 3 a's, 4 b's and 2 c's, in all 9 letters ;

.•. (Art. 307a), the number of ways is

1X2X1X4X5X6X7X8XJ =3X7X4X9-1260.
(1X2X3)(1X2X3X4)(1X2)

f20) The ujmber of terms in which a' will stand first, wili

nvidontly be equal to the number of permutations lake
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all together of the letters in h^c^, whicli, by Art. 307

since there are 6 letters, is

1X2X3X4X5X6 ^,^
(1X2X3X4X1X^)

v21) Reserving two letters, there are 5 letters remaining, then

each permutation of 5 letters may be preceded by ah,

therefore the whole number of permutations of 7 letters

in which ab, or any other combination stands first, will be

equal to the whole number of permutations of the remain-

ing letters taken all together.

1X2X3X4X6=120.
When abc stands first there are 4 letters remaining

;

1X2X3X4=24.
When abed stands first there are 3 letters remaining ;

1X2X3=6.
Thus, ahcdiefg'), abcdiegf), abci{Jeg), abcd{fge), abcd(gef),

abcd{gfe).

(22) The number of different combinations of 2 consonants,

^ , ,_ . n{n—1) 17Xlfi ,„„
out of 17, IS -^^ .-'=—i;^—=136.

1X2 1X2

Each of these combinations may be united with each of the 5

vowels, giving 136X5=680 different combinations of 2 conson-

ants and 1 vowel ; now each of these combinations of 3 letters

will give 1X2X3=6 permutations, therefore the whole number
of words will be 680X6=4080.

(23) In the word " Notation " there are 5 different letters ; and

the number of difl^erent combinations of 5 letters, taken

3 together, is J^ ;= __=10. But there are 2 n's,

1X2 1X2
2 o's, and 2 t's, each of which pairs may be combined with

each of the other 4 letters, and form 4 combinations of 3

letters, making altogether 3X4, or 12 such combination*

where the letters are repeated.

.". the number required ^1U-|-12=22.

The learner may easily write out the several combinations
;

thus the first ten formed of the letters "NOTAI" may be ar-

-angod as in Art. 309, and the remaining twelve are nno, nni,

nnu, nni ; oon, ool, ooa, ooi ; tin, Ito, tta Ui.
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Remark.— The term " difFereiit " is sometimes used ir. the preceding

BOmtions in connection with combinations ; this is not ntended, liow-

ever, to change the meaning of tlie word comhinalions, as given in th»

Algebra (Art 308), but merely to render it more emphatic.

B I N O Jl . A L THEOREM,

WHEN THE EXPONENT IS A POSITIVE IKTEGEB

(2) By comparing the quantities with those in the formula

(Art. 310, Cor. 3), we find re=10, n—?--|-l=6, a=x and

x=y.

Since n—7--j-l=6, we have 10—r-)-l=6, and ?-=:S; hence

n—r-(-2=10—,9+2^7, and r—1=4 ; therefore the coef-

ficient of the r" term, that is, the term in which thB ex-

ponent of the leading letter is 6, is

,t(„_l)(n-2)(TO—3)^10X9X8X7^^^^ ^^^^

1X2X3X4 1X2X3X4
The coefficient, however, is most readily found by writing

out the whole development, thus,

(x+2/)"'=x'°+10x«2/+45a;8u2-Ll20xY4-210xy+, &c.

(3) If instead of a, x, n, and r, we substitute c', —d^, 12, and

6 in the formula, Cor 3, Art. 310, we have

1X2X3X4

(4) Comparing the quantities with those in the formula, Cor.

3, Art. 310, we have a^a^ x=3ab, n=9, and r^7.

. . the T" term is
^X8X7X6X5X4 . 3.3^3^^.6

1X2X3X4X5X6
=84ffl9X729ffiW=61236a"is.

(6) Referring to the same formula, a=Za'', x=—7x', 7i=8

and r=5 ;
.-. the 5" term =-^-''>^^^^(3a2)<(—7.i^V

1X2X3X4
=70X81a'X2401a; 2=1361 3670a«x'2.

(6) Here a=ax, x-—hy, ra=10, and r=6
;

. . the 6" tern

=252a'6'ay.

. the 6" term =1221i^.l^iI^(aK)s(JyV
1X2X3X4X5

'^'
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(7) Since the exponent of the binomial is 12, there will be

13 terms (Art. 310, Cor. 4), hence the middle term will be

the 7", and a=a''^, x=x:", n—\i, and ?-=7, (Art. 310,

Cor. 3)

;

•. the middle term =

—

Ci—Ci—Ci—L^—Oi^(a^y(x^'y
1X2X3X4X5X6

:=924a^'"x*".

(.8_) Since the exponent of the binomial is 13, there will be 14

terms, and the two middle terms will be the 7"' and 8'*,

the coefficients of which will be the same, (Art. 310,

Cor. 5).

(Art. 310, Cor. 3), a=a, and x=x, Ji=13, and r^7
;

-,1^ 13X12X11X10X9X8 7 s ,»,c 7 8
.-. 7"" term =—————————i^fl'a;»=17l6a'a;° ;

1X2X3X4X5X6

Since the exponent of the leading letter increases by unity in

each term, and the exponent of the other letter decreases by

unity, .-. 8'" term =1716aV.

(9) (Art. 310, Cor. 3), a=l, x=x, ra=Il, r=8 ;

. .
8.^ term =ll><I^><^><^><I><^><^(l)Kx)'=330:.'.

1X2X3X4X5X6X7

(10) (Art. 310, Cor. 3), a=x, x=—!/, w=30, r=6
;

... 6- term ^30X29X28X27X26
1X2X3X4X5

=— 142506a;2y.

; 1 1) Comparing this with the general expansion of a-\-x Art.

310, we have a=Zac, x=—2bd, and re=5 ; and we have

(3ac—2bdy=i3acy-\-b(3acy(i—2bd)

+ 10(3ac)3(—2M)2+10(3ac)2(—2M)»-f-5(3ac)(—aid)"

+(—2M)'=243a5c''—810a"'c''M+1080aVA2d2

—n20aWd^-\-240acb''d''~3'2¥dK

02- ia+2l>—cy=)(a+2b)—c\^=ia+2by—3{a+2byc

+3(a+2hy—c'=a'-\-6aH -]-12ab^+8¥

—3a'c—12abc—12b^c-{-3ac^+6bc^—cK

tl3) Since the coefficients in the expansion of (a-j-a;)" do not

contain either a or x, they will be the same when a=l
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or x=l, or both a and x at the same time =1. (See Art

310, Cor. 6).

For the sake of brevity let the coeffi''.ients of the ex

pansion of (l+x)" be represented by A,, Aj, Aj, &c.

then

(l-|-a;)'>=l_l-A,a:+A2a:2+A3a;S+AiX<-l-Aja;5+, &c.

Writing

—

x, instead of x,

(l_x)"=l—AjX+AjX^—AjX'+AjX^—AsX«+, &,c.

Now if X be made ^1, tlien since (1—1)"^0, we have

1—A.+A^—A3+A,—A,+, &c., =0.

.-. 1+A2+A,+Ae+, &c., =A,+A3+A^+, &c.

Tiiat is, the sum of the coefficients of the odd terms is equal

to the sum of tlic coefficients of the even terms.

fNDETERMINATE COEFFICIENTS; BINOMIAL
THEOREM WHEN THE EXPONENT IS FRAC-

TIONAL OR NEGATIVE; SERIES.

INDETERMINATE COEFFICIENTS

Articles 314— 318.

(1) Let li?-^=A+Bx+Cx=+Dx3-fEx''+, &c.
1—3x

Clearing of fractions, we have

l-f2x=A-f(B—3A)x-f(C—3B)x'+(D—3C)x2+, &c.,

from wliich, by equating the coefficients of tJic same
powers of x,

A=l
;

B—3A=2, whence B=5 ;

C—3B=0, whence C=15
;

D—3C=0, whence D=45, &c,

1+2j;_

1—3x
--l+5x-\-i5x-+45x'-\-, &.C.

(2) Let -

^'^^'' =A+Bx+Cx'+l)x'+Ex'+, &.c
1 X—X-

Clcaring, H-2x=A+(n—A)x-1-(C—A—B)x'

-1-(D—B—C)x'+, &c.
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• (Art. 314), A=l,
B—A=2, whence B=3

C—A—B=0, vvlieiice 0=4
D—B—C=0, whence D=7

^+2^ =l-i-3x+4j^+7x^+lla''+, &c.
1

—

X—x^

Here we easily perceive that the law is, that the coefficient of

&ny term is equal to the sum of the coefficients of the two pre-

eeding terms.

(3^ Let 1—3^+^^°^a+Bz4-Cx'4-Dj:^+, &c.
'

l-\-x-\-x'^

Clearing, 1—3x+2x3=A+(A+B)a;+(A+B+C)a;2
+(G+C+D)x'+, &c.

.-. (Art. 314), A= 1 ;

A+B=—3, whence B=—3—A=—4 ;

A-4-B+C= 2, whence C=2—B—A=5 ;

B-|-C4-D= 0, whence D=—B—C=—1 ;

C-j-D+E= 0, whence E=—C—D=—4 ; &c.

. . the series is 1

—

ix-\-bx^—x^—ix*-\-, &.C.

r4) Let ?±?f=A+Ba;+Ca;2+Dj;3+Ej:'+, &c.
b-{-lx

Clearing, 34-2x=5A+(7A+5B)x+(7B+5C)a;»

-l-(7C+5D)x=+, &c.

.-. (Art 314), 5A=3, whence A=f ;

7A+5B=2, whence B=—11=—li
;^

25 52

7B+5C=0, whence C=T!=Z:Ii ,

5^ 5'

7C+5D=0, whence D=—IjII ; &c.

• • 3 11 , 7.11 , 7'.11
3 ,

„
.•. the series is -—^-x4- x'— x^+i &c.

5 5=^ 53 6<

^5^ Let J+f_—=A+Bx+Cx2+Dx3+Ex4 4-, &o
'

(1

—

xY
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Clearing, by muLi plying botli sides by (1

—

x)',

l+a;=:A+(B—3A)x+(3A—3B+C)x2
+(3B—A—3C+D)x3-[-(3C—B—3D+E)a;''+, &c.

.-. (Art 3)4), A=l
;

B—3A=1, whence 6=4=2^
;

3A—3B-|-C=0, whence C=9=3=

;

3B—A—3C+D=0, whence D=16=42,
3C—B—3D+E=0, whence E=25=52 ; &c.

.-. the series is P+2^x+Z^x^-ir'iV-\-5'x*+, &c.

6) Let jT^=A+Bx+Cx^+'Dx'+'Ex''-\-Fx'+, &c.

Squaring both members,

1—a;=A2+2AB:>;+(2AC+B>^+(2AD4-2BC)a;3
+(2AE+,2BD+C>''+, &c.

.-. (Art. 314), A== 1, whence A=l
;

2AB =— I, whence B=—i ;

2AC+B'= 0, whence C=—-=—_i- ;
'

8 2.4

2AD+2BC= 0, whence D—

2AE4-2BDH-C== 0, wlience E=

1
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(8) The solution of this example is exactly like the preceding

except that in equating the corresponding coefficients the

right member of each equation is 1.

(9) Since x—x^=x(l—x), let 1+^=:^+^.
X—X^ X 1

—

X

Reducing the fractions to a common denominator, we have

1+^ ^A(l—x)+Bj; .

X—x'^ x{\—x)

or, l-j-a;=A+(B—A)a;

;

whence A=l, and B—A=l, or B=2.

X—X^ X 1

—

x'

(10) Since a;^—4=(x+2)(a;—2), let
8^—4— ^

' ^
x^—4 x-\-2 x—a'

8a:—

4

^A(x—

2

)+B(a;+2)^(A+B)x+(2B—2A)
,

x^—4: (x-(-2~)(x—2) (x-[-2)(x—2)

8x—4=(A+B)x+(2B—2A) ;

. . A+B=8, and 2B—2A=—4 ;

Solving these equations, we find A=:6, and B=3 ;

8x—4_ 5.3
x=—4 x-1-2 x—2'

(11) Since x'—7x+12=(x—4)(x—3), let —^.il
x'

—

7x-(-13

_ A , B
X—4 X—3'

x+1 __A(x—3)+B(r—

4

)

x'—7x+12 (x—4)(x—3)

_(A+B)x—(3A+4B) .

(x—4)(x—3) '

a;+l=(A+B)x—(3A+4B) ;

.-. A+B=l, and —3A—4B=1 ;

whence A=5, and B=—4 ;

x+1 __ 5 _ 4

x=—7X+12 X—4 X—3-

(13) (x2—IX^—2)=(x—2)(x—lj(x+l).
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,. x^ A , B , C
(x'— l)(j;—2) X—2 X— 1 x+1

_A(x^—1)+B(x—2)(x+])+C(x—2)C;c— IJ

(x—2)(x—l)(x+l)

. x^=(A+B+C)x2—(B+3C)x+(2C—A—2B) ;

Solving these equations, we find A=|, B^

—

i, C=g ;

._
x^ 4__ _ 1 . 1

(x2—l)(x—2) 3(x—2) 2(x—l)~'"6(x+l)'

(13) x"—a<=(x'—a2)(x2+a2)=(x—a)(x+a)(x2-fa2).

1 A , B , C
Let

i^ X

—

a x-\-a x--\-a'

^A(x+g)(x^+a^)4-B(x—

g

)(x^+a^)+C(x^—g^) .

(x

—

a){x-\-a){x--\-a^)

.-. l=(A+B)x3+(Aa—Ba+C)x2
+(Aa'-\-Ba^)x+Aa^—Ba'—Ca\

.-. (Art. 314), A+B=0, (1)

Aa—Ba+C=0, (2)

Aa'-j-Ba^ =0, (3)

Aa'—Ba'—Ca2=i. (4)

Equation (3) is the same as (1) ; then finding the values

of A, B, and C from (1), (2), and (4), we obtain

A=L, B=—J-, and C=—J-
;

4a^ 4a3 2a^

x"—a'' Aa^x—a) 4a%x-{-a) 23=(x=+a=)'

(14) x«—l=(x'—l)(x3+l)=(x—l)(x2+x+l)(x+l)
(a;2_x+l)=(x—I)(x+l)(x2—X+l)(x'+X+l).

11- 1
1 A

,
B

,
C

, D
II we place _— = + -\- + tl , and re-

x«— 1 X— 1 x+1 ' x^—x+I r»+x+r
duce the fractions to a common denominator, and equate tlie

cot'fficients of tlie same powers of x, ue shall find the equations

incompatilile, hence we must make a different assumption.

A little reflection will show that in reducing the above frac-

tions to a common denominator, and comparing the coefficients

of the same powers ol' x, we shall have six independent equa-
tions, hence wu may ashume the numerators of the fractions so as
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to involve six unknown quantities, and as x may appear in the

oumerator of some of the fractions, we may assume it as a factor

af one or more of the unknown coefficients.

• let —-= ^ I

B
I

Cx+C
,
Dx+D'

x^— 1 X— 1 x-\-\ x^—x-\-l x'^-\-x-\-l'

Reducing the fractions on the right to a common denom
inator, the numerators are

A{x^+x'^-Jf-x^^x^-\-x+1)+Bix^—x'+x^—x''+x—l)

-j-C{x'-\-x^—x^—x)+CXx'+x'—x—l)

+I>{x^—x'^-\-x'—x)-\-'D'{x''—x^^x—1), which, are =1.

Equating the coefficients of the same powers of x on both

sides, we have the following equations :

A+B+C+D =0, (1)

A—B+C—D +C'+D'=0, (2)

A+B+C—D' =0, (3)

A—B—C +D =0, (4)

A+B—C —C—D +D'=0, (5)

A—B—C—D' =1. (6)

Solving these equations, we find A=J, B=—g,

C^(j, C'= 3, D=:— g, I) = 3.

Substituting these values, and writing 5 as a factor of tht

whole, we find

1 _1 < 1 _ I , x—2 _ x-\-2 )

a:^— 1 6 Ix— 1 x-\-l x''—x-\-l x^-{-x-\-l'

BINOMIAL THEOREM,

WHEN THE EXPONENT IS FKAOTIONAL
OK NEGATIVE.

Note.— Instead of finding the general law of the coefficients by the

method given in the Algebra, page 277, it is proper to inform the stu-

dent that there is another method, which is more simple in theory, but

far more difficult in practice. We shall explain the method and show

where the difficulty occurs.

Second.—-To find the general law of tlie coefficients.

Let (l+xy=l+nx+'Bx^+Cx^+Dx''+. &c., where B

C, D, &c., depend upon n.

IS
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Squaring both sides, we liave

(l4-a;)2"=l+7JX+Bx2+Ca;'+Di''+, &c.,

-\-nx-\-n^x--{-'Bnx^-{-Cnx^-\-, "

But (Art. 201), (l+»;)2«=|(l+a;)2("=5l+(2i+a=)(".

Considering (2x-{-x'') as one term, we have

{
\-{-(2x+x^)l''=l+n(2x+x')-\-B(2x+xy+C(2x+x'y+,. &.C.

=l-\-2nx-\- nx^

+ABx^-\-4'Bx^+ Bx*

+8Ca^+12Ca;''4-, &c.

+16Dr'4- "

+ "

Now since tliis series and the former must be identical, we
have, by equating the coefficients of the lilce powers of x,

2n=2n,

2B+n2=4B+re, .-. B='i^-)
;

' '

1.2

2C+2B»=8C+4B, .-. c=^±^)^M^^)(n-^)
'

3 1.2.3

2D+2C+B==16D-1-12C4-B.

To find D from this equation in terms of 'i is a difficult opera-

tion, and the finding of E would be still far more difficult. This,

renders the demonstration given in the Algebra, on the whole

much the easier of the two.

Article 320.

12) Here (n+l)±^{^^= ^Xfj,X\!i==tl ; . r >1;

l-.ence the 2"'' term is the greatest.

(3) Here (n+1) J-=(8-H)J ^=^9X^X^=if=4,V.

The/)-s< whole number, greater than 4yj, is 5 ; therefore the

B"' term is the greatest.
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Article 321.

(1) Herea=l,i=

—

x,n=— 1.

. (1—.r)-'=l—IXIX—j:— ^^~'~^V

=^\-\-x-\-x'^-\-x^-\-, &c.

(2) Here a=l, 1=

—

x, ra==—2.

.-. (i_a;)-==I—2X1X—X—^t±Zy(—i;)J

1.2

= l+2x+3x'+4a;2+, &c.

(3) To develope this expression, expand tlie part in toe pa

rentliesis, and multiply by a?.

Comparing (a-)-x)"^ with (a-J-^)") we have

a=a, i=a;, and n=—2.

1.2

_2(-3)(-4)^^,^3^, &c.,
1.2.3

1 3a;
I

3x2 4^3

a^ a^ a'' a'

«'(a+x)-== l_??+3x2_4^ +, &c.

(4) Herea=l,J=—a:', ra=J.

.-. (l_x=')i=l—JXlX^H-l^i^C—a:')'

1 .2

_L.i(—i)(—

3

)r_.r3)3_. &c.,
1.2.3

" 3" 9 sT ' '

(6) Here a^a?, b^x, n=l.
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1 • ^

-a(—i)(—i) ^a2-)-f^3_|_ i(—')(—'.)(—I) (a^)-?a^4-, &c.,
1.2.3 1.2.3.4

=^a+-——+—-—?^+, &c.
2a 8a' lea* 128a'

In making these reductions the pupil must notice that

1(3=) ^x=
X

TTV..T 1)^ 0\~? 9

1-2
8(a^)^

«'''

i(^)(r:i)(a^)-t.'=: ^^=J^, &e.
1.2.3

jg^^,^|
16a=

6) Here 0=^0?, h^—x, n=^.

.-. (a'—a:)i=:(a')^+ira')~^X—a:+"^i^t-'(a')"*(—x)'
1 • )i

I a(—s)(—s)(^3s-§(_.^y_|_ -3(— i)(—3)(— 3)
c„3y- V/j-y

1.2.3 1.2.3.4

+, &c., =a—JL—^—^l— '0;^-' — , &c.
Sa' 9a5 81a» 243a"

f7) Here a^l, h=2x, ?i=^l.

.: (l+2a;)^=l+.K2i)+i^Ili\2.r)2+^l"i:i^.^rri\2x)«

1.2.3.4 ^ ^
^'

(8) Here a=a2, i=—x', n=\.

i . 2

( x=)^+, &c.,
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X3 rviH ryif ft lyiO

=<l— _— —
, &C.

2a 8a' 16a» 128

(9) l/a T^=lf 5« ( 1+^ ) S
=V«V ( 1+^ ) •

Comparing V I l-\-- ) with (a+l)", we have a=l, i=-
\ a I a

^ 1.2.3.4 a^^

3a 9a2 81a' 243a<

V -r V
^
Tg^

9a2^81a' 243a''^ /

(10) (a'+^')^= ja'
( 1+^^

) I

^=«
( 1+J )

*

Comparing [ 1+- I
with (a-)-i)", we have a=l,

a?
*=-. »=i-

I a' / ^^,3^ 1.2 ffl= 1.2.3 af^

, , a;' 2x» . 2 . 5a;' „

3a' 3 . 6a« 3 . 6 . 9a'

.•, (a'+a:')'=a I 1+—— -4- . —,&c. I^
\ 3a' 3 . 6a'^ 3 . 6 . 9a' /

(11) 5/8+1=3/^8(1+1) (=2 V(l+^)- By comparing this

with example 9, we find that a^8, Ij a=-1, and x=\.
We may therefore obtain the development merely by

substituting i for -, in the development of %ja-\-x, or by
a

, the method pursued in the solution of that example.

(12) This is the same as example 10, except that x' is minus

instead of plus : the development will therefore be the
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same, except that the even powers of a;', that is a;', x",

and so on, will be plus instead of minus.

(13) (a3.-x3)?= \a^
( l-J )

Y'=a' (
1-^'

)
'j

...
°' - "^

^ ^

-^
(
1-^,!

j
-f

1—_ 1 ^ with {a~\-hy, we have fl=l.

*=-r3' "=-f •

_|(-iix=|)f_-!)'_,&e.,
1.2.3 V a3 y

, ,
2 x'

,
2 . 5x6 , 2 . 5 . 8a;5

3 a' 3 . 6a6 3 . 6 . 9a8
'

/ , xM -5 , 2 xs
, 2 . 5a:«

I

2 . 5 . 8x9
,

\ aS / 3 a= 3 . 6a' 3 . 6 . 9a»^

Article 323. (16).

(1) V9+l=>/9(l+i)=37(l+-J); (See Formula, Art. 322.

J

=]+.055555—.001543+.000085

—.000005+, &c., =1.064092,

and 1.054092X3=3.16227+.

(2) ^27+3= V27(l+p=3V 1+1 ;

Viqri=i+^xi-i xL+3Lx5--Lxl2+, &c.,

=l+.037037—.001371+.000084—.000006

= 1.035744; and 1.035744X3=3.10723+.



BINOMIAL THEOREM.

fZ) J/27-3=5y27(l-^)-.--3V(l-i).

The development of (1— ')* is the same as that of

(!-(-')', except that all the terms after the first are nega-

tive. To get the result accurately requires that we should

calculate five terms of the series after the first. These

carried to nine places of decimals are

—.037037037—.001371742—.000084676

—.000006272—.0000005U—, &,c.

Subtracting these from 1, and multiplying the remainder

by 3, we have 3/24=2.8844992+.

(4) V256+4=V256(l+gi^)=4Vl+i;V

1

= 1+.003906—.000022+, &.C., =1.003884,

and 1.003884X4=4.01553+.

(S) V128—20=V 128(1—j5J=2Vl—/2.

In calculating the value of each term, the shortest method

is to find it from the preceding term. Thus, by consid-

ering the formula, Art. 322, we notice that each term in

the development after the first, is equal to the preceding

term, multiplied by two factor;s, one of which is _, and
a"

the others successively -, , , , ,

n 2n 3n An bn

and so on ; therefore calling the terms A, B, C, and so

on, we have

-w ^ 32 ^ 7-32-^ T^^° aT'slZ^ 7^5^
—II./tjE— , &c. =1—.0223214—.0014947—.0001446

—.0000161—.0000019=.9760213, and .9760213X3= 1.95304+.
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THE DIFFERENTIAL METHOD OF SERIES.

Article 325.

;2) Here «=2. a=l,i=4, c=9.

. . I>,=l—2X4+?^=1—8+9=2.' 1.2

(.3) Here n=3, a=l, J=3, c=6, d=10.

... D,=-l+3X3-!^+!Ml^°=-l+9-18+ie

=0.

'"
'

1.2 1.2.3

(4) Here n=5, a=l, 6=3, c=9, rf=27, e=81, /=243.

.-. Dj=—1+15—90+270—405+243=32.

(5) Here re=5, a=\, b=l, c=j, d=g, e=j\, f=s\-

,,_5.4 , I
5.4.3 ,_5.4.3.2 _,

1.2' 1.2.3"^ 1.2.3.4'''S t 5 1 o*^ 1 O O'^ 1 O Q -t"i5

j_^ .4. 3. 2.1
, iJlQi 214-1' 6 _(_ 1 — 1 J

1 2.3.4.5'^^ ^ 2T^*4 Tg^lU— 4 T

_1_ 1 1+ 3 2 32-

Article 326.

(3) Here a=l, D,=3, Dj=2, and D3=0.

.-. 15" term =1+(15—l)3+ll:-i!x2=l+42+182
1 • ^

=225.

n« term =l+(re—l)3+^-5z:i)^^=H2x2=n=.
1 • ^

(4) Here a=l, D,=4, Dj=6, ©5=4, Di=l, Dj=0.

.-. 12" term =1+11X4+—-li^X6+" ' ^° ' ^X4
1.2 1.2.3

,
11.10.9.8^ 1=1+44+330+660+330=1866.
1.2.3.4

(5) Here a=l, D,=2, D,=l, D,=0
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.• n'nerm =l+(«-l)2+^"-^)(-"=g.)==g!+!' '

1.2 2

2

(6) Here a=l, D,=3, Dj=3, D3=I, D4=0.

.-. n'* term =1+Cra—l)3+^"^^^^"~^)x3
1 • <a

(„_1)(B—2)(m—3)^
1T2T3

^

^6+18;;—IS+Qra"—27?i+18+w'—6ra'-|-lln—

6

1.2.3

1.2.3 1.2.3 1.2.3

(7) Multiplying the factors together, the terms are 70, 252

694, 1144, 1950, and so on.

Here a=70, D,=182, 0^=160, Ds=48, 0^=0.

.-. 9'* term =70+8X 1824-i^X 160+^ '
"^

' ^X48
1.2 1.2.3

=70+1456+4480+2688=8694.

(8) Here the terms are 2, 12, 30, 56, and so on ;

hence a—2, D,= 10, Dj=8, D3=0.

.-. n" terra =2+(n—1)10+'^"~^^'^"~^^X8

=2+10re—10+4ra2—12n+8=4ra=—2re.

Article 327.

<3) Here a=l, D,=2, Dj=l,Dg=0.

.-. Sum of n terms =n+^^!^)x2+!5^^=ll^^=?-^Xl
1.2 1.2.3

_6re+6?!2—6?i+ra'—3n=+2ra^n'+3n=+2ra
1.2.3 1.2.3

_m(ra+l)(?H-2)

1.2.3

(4) Here a=3, D|=8, Dj=12, T),=6, Di=0.
19



218 KEY TO PART SECOND.

wf font 'nn^o I

20. 19^0 , 20. 19. 18
.-. rium of 20 terms =20X34- XS^- .

1.2 1.2.3

^j2_j_20X19>a8X17s^g_gO_|_j520-|-i3680+29070
1.2.3.4

=44330.

(5) Here the terms are 6, 24, 60, 120, 210, and so on ;

hence a=6, D,= 18, Dj=18, 03=6, and D^=0.

.-. Sum of 20 terms =20X6+?i^X18
1.2

20X19X18
,
20X19X18X17 ^^,,„,,^^„

1.2.3 1.2.3.4

+20520+29070=53130.

(6) Here a=l, D,=7, Dj=12, D3=6, D^=0.

ci r * T
n(n—1).,!, , n(n—l)(n—2)

.*. Sum of n terms =n+_^ ^X"+-^
1.2 ' 1.2.3

X i9_L.
''("—!)(''—2)("—3) y_

fi_,4ra I

14a^— 1471

1.2.3.4 4 4

,
Sre-''—24ra='+16CT

I

TO''—Sm^+l ITO^—6re
"^

4 4

="'+^"'+^ =^V^+2TO+l)=['<n+l)J^.
4 4

(7) Here a=l, D,=3, Di,=3, D3=l, D4=0.

or.. I
n(n— 1), ,„ ,

n(n—l)(n—2V .„
.-. Sum of n terms =7i+_i ^X3+-i ii iX3

1.2 1.2.3

,
re(rj— l)(re—2)(ra—3)^24re_L36re2—36re

1.2.3.4 24 24

12n3_36?i=+24ra , n"—6ra3+U7i2—6?i

24 24

^W+6m34-i ing-|-6n_ro(m'+6n°+l ln+6)

24 24

_re(m+l)(n+2)(TO+3)

24

As the direct method of factoring n*-\-6n'-\-l'ln^-\-6n,, is a work

of some difficulty to the learner, we shall explain the operation.
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It is evident from Articles 234 and 253, and ttie principle is

proved directly in Art. 395, that if we put n -t-6n^-\-lin^-\-(in=0

and find the values of ra, which we may suppose to be a, b, c, d,

then the factors of the expression will be n—a, n—b, n —c, n—i

By proceeding to solve the equation

according to the method explained in Art. 243, we have (n'-f-3'*)'

-|-2(m^-1-3»)^0 ; from this equation we find n?-\-?,n=:Xi, or —2.

From the equation ra^-)-3ra=0, we have ra=0, or —3 ; and from

the equation 'n?-\-'in=—2, we have w=— 1, or —2 ; .. the fac-

tors required are n, n-\-\, ii-\-2, and n-\-S.

(8) We must find this series by making n=l, 2, 3, and so on;

thus, if re=l, the first term is 1 ; if m=2 the second term

is 16 ; if n=3, the third term is 63 ; in like manner we
find the fourth term is 160, the fifth term 325, and so on.

Hence, we find a=l, D,=15, T)^=32, D3=]8, T>^=0.

.-. Sum of 25 terms =25+?illixi5+-^-?il^ix32
1.2 1.2.3

,
25 . 24 . 23 . 22^ig_25_j_4gog_|_73gQQ_^227700

1.2.3

=305825.

PILING OF CANHOn BALLS AND SHELLS.

Articles 328— 332.

(3) Comparing the number 15 with Formula B in Art. 332, w»
have ra=15.

.. number
^<>»+l)(3>»+l)^15X 16X31^

6 6

(4) See Formula C, Art. 332, 1=52, and 7J=34^

~ 3
«(»+l)(3Z—ra+l)=VX35X(156—34+l-i=V'X35
X 123=17X35X41=24395.

(5) Number of balls in a complete triangular pile of which

each side of the base is 25, is (Art. 332),

Jre(»+l)(n+2)=Vx26X27=25X 13X9=2925.
Since the number of balls in a side of the top course ia
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J 3, the number in a side of the pile that is wanting is 12,

hence the number in this pile is 'g X-3X14=:364.
.-. 2925—364=2561, the number required.

(6) Number in the pile considered as complete, (Art. 332J,

=-(ra+l)(ra-[-2)=Sg8x 39X40=19X13X40=9880.

Since there are 15 courses, and the number of balls is

one less in each course than in the next preceding course

therefore 38—15^23 is the number of balls in a side of

the incomplete pile, and the number in this pile is

VX24X25=23X4X25=2300.
. . 9880—2300=7580, the number required,

f7) Number in the pile considered as complete (Art. 332),

=-(reH-l)(2»+l)=YX45x89=22X 15X89=29370.

Number of balls in a side of the pile that is wanting is

21, and the number in the incomplete pile is

"g'X22X43=7XllX43=3311.
.-. 29370—3311=20059, the number in the incomplete

square pile.

(8> ^1521^39= number of balls in a side of the base course,

Jl69 =13= " " " " " top "

^S^'X 40X79= 13X20X79=20540, the number of balls in

the pile considered as complete.

13—1^12, the number of balls in a side of tlie base of

the pile that is wanting ; and 'g" X 1 3X25=650.
.-. 20540—650=19890, the number of balls in tha in2om.

plete pile.

(9) Here we have the equation (Art. 332),

i'.w(ra+l)(3;—ra+l)=6440,

in which ra=20, to lind I.

.-. \°X2](3Z—19)=6440,

70(3;-19)=6440,
3<—19=92, and Z=37.

37X20=740, tlie number of balls in the base.
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1

110,. Here we have the proportion

ln{n+i){n+2) : in(re+l)(27i+l) : : 6 : 11.

Placing the product of the means equal to the product of

the extremes, and canceling ln(n-]-l) on each side, we

have 1271+6= Ura+22,

whence m=16, the number of balls in a side of the

base of each.

in(7i+l)( n4-2)=VX 17X18=816 = balls in tr. pile,

j7i(7i+l)(2re+l)='a''X 17X33=1496= " " sq. pile.

(11} Since the number of balls in each side increases by 1 aa

we descend, and since there are 7 courses below the upper

one, tlierefore 36-|-7=43, and 17-|-7=24, are the num-

ber of balls in the longer and shorter sides of the lower

course,

iXre4-l)(3Z—7!+l)=VX23(129—24+l)=10600,
the number of balls in the pile considered as complete.

It is evident that 35 and 16 are the number of balls in the

longer and shorter sides of the pile that is wanting, hence

the number of balls in this pile, is

V X 17(105—16+1)=4080.

.-. 10600—4080=6520, the number of balls in the incom.

plete pile.

INTERPOLATION OF SERIES.

Article 333—335.

1 1) Since the 4" differences vanish, we have (Art. 325),

e—id-{-Sc—4i-|-a=0, where a=3, c=15

d=30, and e=:55, to find b,

.-. 55-4X30+6X15—46+3=0,
whence J=7.

Having the terms of the series, viz. . 3, 7, 15, 30, 55, we
readily find the first terms of the several orders of differ-

ences (Art. 325) to be D,=4, 0^=4, D3=3, and 0^=0,
therefore by making re=6, 7, and 8 successively, and sub-

stituting the values of D,, Dg, and Dj in the formula

„+(„_l)D
,^(n-l)(^-2)p^ („_i)(^_2)(^z--3)p
'

1.2
' 1.3.3 '
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we obta'.n the 6'*, 7", and 8'* terms. Thus the 6"' term Is

3+5X4+8X4X2+^^^1^^X3
1X2X3

=3+20+40+30=93.

7'* term is 3+6X4+6X5X2+-^^^^X3=3+24+60
1X2X3

+60=147.

8»term is 3+7X4+7X6X2+'^^^^^X 3=3+28+84
1X2X3

+105=220.

'2) Let x= the 5"" term, then writing down the terms, and

finding the respective orders of differences, we have

I , 18 , 30 , 50 X , 132 , 209,

, 12 , 20 , 1—50 , 132—x , 77 ,

5,8, a;—70 , 182—2x , x—55 ,

3 , a;—78 , 232—3x, 3a;—237,

1—81 , 330—4j;, 62—489,

411—5x , IOj,'—819,

15x—1330.

- 15x—1230=0, and a;=82.

Or, thus, since the 6"" differences vanish, or become 0,it

is merely necessary to find the first term of the 6"' order,

by means of the Formula, Art. 325, by calling n=6,
a=ll, i^l8, &c., thus,

,—^^+"("—'V—"(^— ')'^»—^),f+
'^("~')("~^)("—^) a

1.2 1.2.3 -1.2.3.4

_TO(m—l)(7t—2)(re—3)(ra—4)^
1.2.3.4.5

(n—l)(n_3)(n—3)(n—4)(ra—5) .

1.2.3.4.5.6

. „-6X18+^>^X30-g><iX4x50+«X^X'* ><J.
2 2X3 2X3X4

_6x5X4X3X2^j^^i 6X5X4X3X2X1 yo(jg.-o .

2X3X4X5 " 1X2X3X4X5X6
11—108+450—1000+15X—792+209=0,

whence 15a;= 1230, and a;=82.
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(3) Calling the respective given logarithms, a, b, d, and e,

since c is wanting, we have, by the formula, Art. 325,

e—4d+6c

—

4b-\-a=0.

From this equation, by substituting the values of a, f d.

and e, we readily find c=2.0128372.

14)
Nos.
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^ IHFINITE SERIES.

Avticlcs 336— 338.

(.2) Since y=l,^=l, and m=1, 2, 3, &c,

. 51+2+1+1+. &c., ad inf. ) ^j
f-(-2+l+3+> &c.,) ad inf.S

1+2+3+4- • • • „

— (s+i+j- • n'^^Il)

(4) Since 9=1, and ;5=3,

_ 5 i+i-+i+i+i+.&«-'l _, , , , ,_,5
'-a+i+^+^+^+. &c.) s

-'+3+3-'^'

and _'* of this sura =|i= sum required

71+1 7l-fl'

(5) Since 5=1, jo=2, and ?i=l, 2, 3, &c.

. 51+2+ i+i+*+. &c.,

' -(l+l+i+. &c.)

]

i+i=''

(6) To find the series let n=l, 2, 3, 4, &c., successively, thct

the terms are

..i-+_L+J_+J_+,&c.
1 . 5 2 . 6 3 . 7 ' 4 .

8^

Also, 5=1, and p=i.

and -'* of this sum =1 of |^=||.

. 5l+Ri+3+ i+s+.- &c., ) _ , ,•
i _a+i+.&c.^^ -1+2+3+3

(7) Dividing each term of this series hy 2, it becomes

1
I 1 1 1 I 1 I ^ „_4- -4- —4- +, &c.

2 2.33.44.5
Tlie sum of this series has been found (see example 2.) to be 1

therefore llio sum of ihc ffiveii series is lX2=i!.
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(8) ]\[ultiplying each term of this series by 3X4, or 12, it

becomes _+— 4- 4-, &c., the sum of which has
2 2.33.4

been found to bo 1 ; therefore the sum of the series is

1^12=t'2.

KECURRING SERIES.

Articles 339— 343.

\2) Here A=l, B=6x, C=\2x^, D=48a:', E=120x^ &c.

Making x=l, and substituting in the formula, (Art. 341),

we have^=^^X^^-6X'^»=l. ^- '^X 120-48X48_,
12X12—6X48 12X12—6X48

(Art. 343), s-A+B-Apx_ l+6a;-:c _ l+5x
1

—

px—qx'^ 1

—

X—6x- 1

—

X—6x'^'

(3) Here A=l, B=2x, C=3x^ D=4a;', E=5x\
Making x=l, and applying formula (Art. 341), we have

3X4-2X5^2 3X5—4X4_ ^

3X3—2X4 " 3X3—2X4

(Art. 343), ci_A+B-Apx_\+2x-2x_ 1

1

—

px—qx'^ 1—'2x-\-x'' (1

—

xy

k4) Here A=^, B=-'^^ C="J!^, T)=-'^, &c.
c c c^ c*

If we make x=\, and apply the formula, (Art. 341), we

shall find jt)=—_, and q=Qi, but the scale of relation is
c

easily seen to be —-, since if any coetEcient is multi-
c

plied by this quantity it will give the coefficient of the

next following term.

a ahx
I
ahx

A+B—Apx '„ 72~ 75' „
(Art. 343), S=-^^^^ ^=° 1 - ^

^—P^
J

, ?5 —c+te'

c

(5) Ht le A=0, B=i, C=j;', &c., and the scale of relation

is that is p=l, and 7=0.



22G KEY TO 1-/1 RT SECOND.

„_A4-B

—

h.px 0+a;—0_ x

1

—

px 1

—

X 1 —x'

(6) Here A=0, B=a;, C=—x-, &e., and the scale of re.aticB

is — 1, that is p=— I, and j=0.

„ A-|-B

—

A-px_d-\-x— X

I—px \-\-x l-\-x'

(T) Here A=l, B=2x, C=8x2, T>=28x\ E=100a;<.

Making a;==l, and applying formula, (Art. 341), we have

_8X28—2X100^3 _8X100—28X28^g,
^ 8X8—2X28 '* 8X8—2X28

(Art. 343),
g^A+B-Ag_^^l+2.-3x^ 1-x

l—px—qx'^ 1—Sx-2^2 1—3j;—2a;2

(8) Here A=l, B=3x, C=52:^ D=7x3, E=9a;''+, &c.

Making ar=l, and applying the formula, (Art. 341), we have

5X7-3X9_o 5X9—7X7__,
5X5—3X'7 " 5X5—3X7

(Art. 343),
s=A+B-Ap_x_l+3x-2x^^J+^_

1^33;

—

qx^ l—2x-\-x'^ (1

—

xY

({)) Here A=l, B=4x, C=9a;', D=16i', E=25:i:S &c.

Making x=l, and applying the formula, (Art. 341.)

The values of p and q thus found will not reproduce the

series, hence we must apply the equations in Art. 342, and

find the values of p, q, and r, when a;=l. These equa

tions give 16^ 9p-(- iqAri",

25=16;)+ 9y+4)-;

36=25;!+16g+9r.

From these equations we find p=3, 5=—3, and r^l.

We shall now extend the principle of Art. 343 to finding the

gum of an infinite recurring series when the scale of relation

onsiste of three terms.

The 1" term A=A ;

the
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Now if S represents the required sum, by adding togetlier

the corresponding members of these equalities, and ob

serving that C+D+E+, &c.,=S—A—B ; B+C+D+,
&c., =S—A, we have

S=A+B+C+(S—A—B)px+(S—A)7a;2+Srx',

whence g^A+B+C-(A+B);>x-Ag^^
^

1

—

jix—qx'^—rx^

Substituting in this formula the values of A, B, C, and

of p, q, and r; we have

^_Tl-\-4x+j0c'—3x—\2x'+Sx^_ 1+x
1—3j+3x=—x' (1—a;)''

KEVEKSION OF SERIES.

Articles 344— 346.

(!* Comparing the series with the formula, (Art. 344), 'we

have a=-|-l, i=— 1, c=+l, d=— 1, &,c.,

hence by substitution, we have

1 — 1 2— 1 , —1+5—5 , , .

ir=-2/—— y'+ -y-2/'——^ y*+, &c.,

(2) Here a=l, i=l, c=l, d=l, &c.

1 1 , ,
2—1 3 1—5-1-5 4 . o

(3) Comparing the coefficients with those of the series lo

Art. 346, we have a=2, A=3, c^4, d=5, &c.

1 3,1 27—8 5 „ „
.'. x=-ii—

—

v-\- v — , &c.,
2 16 128

(4) Applying the formula, (Art. 345), we have

a'=], a=—2, and i=3.

... ^=_l(y_l)+^(y_l)^_i|z:?(y-l)3+, &c.,

=—i(2/-i)4 i(y-i)'-/5(y-i)'+. &c.
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(5) See formula, Art. 345. Here a'=l, a=l, J=—2, c:=+

,/ ,^ I o/ ,N5 1
8—1, ,,, 0+10—40

(y-^y,

=!/-l+2(y—l)»+7(y—l)'+30(y—l)^+,&c.

(6) See formula, Art. 344. Here a=l, i=J, c=|, d=j'4.

&c. ill 1 S I 5

.-. a:=ly—%=+i l2/3_54 L2TIIy4_|_^ Slc,

(7; Let X =Ay-\-Bf+Cy^+, &c. ;

tlien x^=AY+2A.By'+, &c. ;

3.3— A^y'+, &c.

Substituting these values for x, x^, a;', . . in the second

member of the given equation, and transposing the first

member, we have

O^ffAly+gH
—1 7jA= -i-27iAB

+ kA'

f+-

Hence A^—1=0, A=A+By—fl=0,
A3/t+2ABi+^C—i=0 ;

whence, A=l, B=:-(a—A'h)=l I a—- ) =L(o^'--»j
ff 9 9^ g'^i f

C=l(i—A'/c—2ABA)
9

g i 9^ gg'' »

_ bg''—'kg—'ih{ag'^—K)

~ 9'

^y_^{ag'-h)y\ [bg^-l-9-2h{ag-'-h)
J,/^ ^ ^

9 9^ 9
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CONTINUED FRACTIONS; LOGARITHMS;
EXPONENTIAL EQUATIONS; INTER-

EST AND ANNUITIES.

CONTINUED FEACTIONS.

Articles 347— 356.

(.i; Dividing the greater term by the less, the last divisor by

the last remainder, and so on, the quotients ai-e 3, 4, 5,

and 6; henco the integral fractions are -j, |) j, and j, and

thb "onverging fractions are

1 1X4 _4 4X5+1 __21 21X6+4 _130
3' 3X4+1 is' 13X5+3 68' 68X6+13 421"

The S""* and S"' examples are worked in a similar manner.

(4) Making 3900 the numerator, and 10963 the denominator

of a fraction, and proceeding as in the preceding exam-

ples, the successive quotients, that is the denominators of

the respective integral fractions, are 2, 1, 4, 3, 2, 2, 1, 30;

hence the first approximate fraction is I, the second,

_-L^L=l ; the third, ^J1±±I= s
; and so on.

2X1+1 3X4+2 '*

C5) Making 4900 the numerator, and 11283 the denominator

of a fraction, and proceeding as above, we find the suc-

cessive quotients to be 2, 3, 3, 3, 2, 7, 1, 1,1,2; hence

1X3
the approximating fractions are -I ; ——— =3 ;^^ - 2X3+1 ^

3X3+1 _, n . 10X3+3_33 . 33X2+10_ ^, ^^
7X3+2 -^'23X3+7 '^'* ' 76X2+23 '

'^^'

(6) Making 1 the numerator, and 3.1415926 the denominator

of a fraction, or 10000000 and 31415926, and dividing the

greater by the less, the less by the remainder, and so on,

the quotients are 3, 7, 15, 1, 243, &o. Operating in a

similar manner with 1, and 3.1415927, the quotients are

3, 7, 15, 1, 354, &c., then finding the approximating or

converging fractions, corresponding to these quotients, wa

^^^^ , . 1X7 _7 . 7X15+1 _,„„. 106X1+7
^'3X7+1 -^'22X15+3 ^'-^ ' 333X1+22
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The ratio of 113 to 355, that is ff §= 3.1415929+ ; and since

the true ratio lies between 3.141526, and 3.1415927, and since the

diiTerence between 3.14159:29 and 3.1J15926 is .0000003, I I'ere-

fo''6
3.-, i expresses the part that the diameter is of the circum

ference to within less than .0000003.

(.7) 5 hrs, 48 min., 49 sec, =20929 seconds,

24 hrs, = 86400 "

Operating with these numbers as before, we find the euc-

cessive quotients to be

4, 7, 1, 3, 1, 16, 1, 1, 15 ; and from these the converging

fractions are readily found.

(8) Dividing the greater term b'- the less, the less by the

remainder, and so on, the quotients are

1, 1, 2, 1, ], 1, 3, 2, 1, ], 2, 3 ; and the successive con-

verging fractions found from these are {> l, |-i *i -^^t \^,

|§, &c., whence -j-c,- is the required fraction.

(9) In solving this example it is most convenient to consider

1 as the numerator, and 27.321661 the denominator, and

then invert the resulting converging fractions. Dividing

27.321661 by 1, or 2732166] by 1000000, as in the pre-

ceding examples, the quotients are

27, 3, 9, 5, 2, &c. ; these give for approximating fractions

2 7' 8 -i ' 7 II a ' 3

27

^^^f, &c., hence the required ratios are

ii H ' I 4 3 >
'

(10) Referring to Art. 353, we have a=l,

1
hence J2^\-

2+-
^2+, &c.

The integral fractions are ;',, :',, -',> ;,, &c.,

" converging fractions are 5, §> jri; -ofi, &,c.

Adding 1 to each of these we have fi J> }?, -^,^, &o

(11) Referring to Art. 353, wo have rt=2, and 2a=4,
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hence ^4+1=24--

^+i+, &c.

The int. fractions are ^, |, {, | |, &c.

" conv. fractions are |, j",, fj /tf^. tW^. &c.

Adding 2 to each of these, we have -|, f|. Vs ' l§|. fill' &c.

Now the fourth fraction being in an even place is less than the

true value, and the fifth being in an odd p.ace is greater than the

true value, therefore ^5 is greater than |g|, ana less than 2 88|

(.12) Since 8'=8, and 8'=64, x lies between 1 and 2

hence let x=l-\--.

y

.-. 8'+7=32, or 8X8r=32,

or, 8v= 3g2=4.

or, 8=4", by raising both members to the y power

,

Now since 4'=4, and 4^=:16, the value of y lies between

1 and 2, hence let j/=l-|-_.
z'

1 1 1
.-. 4'+i=8, or 4X4^=8, or 4«=2;

raising both members to the z power, we have

2'=4, whence z=2.

1 3 3

^ 2

^13) 3'=25 ; 32=9, and 3'=27.

.-. ar=2+l.
x'

32+fcl5, or 3=X33=16, or 3x'='p==|.

Since 3?=6, we have (-p'^'siS
;

here x'=2-\---,
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•• (|)='+^=3,or (|)^X(|F=3,

1_

whence (2)z"='^2.

or, mr"=l i

here a;"=6-|-—

.

x'"'

.-. ar=2+l

hence the approximating fraction to be added to 2, i*

h or T3 ;

-r%=2.46+, which is true to within {j\y=j^-g.

This method of finding the value of x is more curious thin

useful, as the same thing may be accomplished directly, and wi'h

but little labor, by means of logarithms.

„, log. 15 1.1760913 „ .„- ,

Thus a;=—e = =2.465 nearly.
log. 3 .4771213

^

LOGAIilTHMS.

Article 366.

(1) The result in this example follows directly from Art. 360,

the pupil, however, may prove the principle generally in

the case of three factors ; thus,

< =N (1),

a" =N' (2),

a'"=N" (3).

Multiplying equations (1), (2), and (3) together, we have

But, by the definition of logarithms, if we consider a the base

of the system, then u:, x', and x" are the logarithms of N, N', and

N", and {x-\-x'-\-x") is the logarithm of NN'N", bonce, the sum

of the logarithms of three numbers is equal to the logarithm of

their product.

(2)- By Art. 361, log. (
^'"^

]
= log. (afc)— log. {de) • but
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log. i^abc)= log. a-j- log. h-\- log. c ; and log. (&)= log. d

-\- log. e ; hence log. ( — 1 = log. a-{- log. h-\- log. c
\ de /

—(log. d-{- log. e)^ log. a-|- log. b-\- log. c— log. d—
log. e.

(3) By Art. 360, log. (a™ . J" . (?>.)= log. a'"+ log. i»+ log. cp;

but (Art. 362), log. a"'=m log. cf, log. i"=;i log. b, and

log. c?'=p log. c.

.'. log. (a™ . b" . dP^^m log. a-\-n log. Z)-|-p log. c.

—^— ) = '°?- (""" • i")— log- C=m log. a-\-

n log. J

—

p log. u.

(5) a^—a;^=(a-|-a:)(o—a:), and log. (a'

—

je^)

= log- \{a-\-x){a—x)\= log. (a+a:)+ log. (a—x).

(6) Since log. (a?—a;')=: log. (a4-^)+ log- (<2—^))

I log. (a'—^•*^;=:3 log. (a+x)-j-i log. (a—ir),

but, (Art. 363), }, log. (a=—a;2)= log. (o='-^i;=')^,

or, log. Jo'—x'^

;

.-. log. ^a^—a;'=.l log. {a-\-x)-{-y log. (a—a;).

(7) a^X iJa^=a^Xa^='^ ; and log. (a * )= 'j log. a,

or, 3| log. a.

(8)
;^a'—x^ J a'-'—x^ Ka-]-x)(a—x) / a—x

7^T^4~V("^+^XM^~^'(^=Kr''(a+x)= ^{a+xy

= log. (

= log. (a—x)—3 log. (a+x) ;

log- /, ^, = log. (a—x)— log. (a+x)3,
(a-j-x)'

hence log. ^/ , or log. .1^ _
\/(ffl+x)' (3+a;)=

=AJlog. (a—x)—3 log. (a+x);;

or, =1 log. (a—x)—I log (u+x") ; but the first form h

the best.

20
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Article 370.

(l; Since 14=2X7 • log. 14= log. 2+ log. 7,

= log. 3+ log. 5 ;

= (log. 2)X4;
= (log. 3)X2+ log. 2 ;

= (log. 2)X2+log. 5;

log. 3-1- log. 7
;

:(log. 2)X3+log. 3;

:(log. 5)X2;
:(log. 3)X3;
:(log. 2)X2-(-log. 7;

log. 3+ log. 10.

''2) The numbers will evidently be those that can be formed

by multiplying together any two or more of the factors 2,

3, 5, 7, either of which may be taken more than once if

necessary, thus,

2', 5X7, 3=X2^23X5, 2X3X7,3^X5, 2<X3, 7=, 5=X2,

3^X2, 2'X7, 2^X3X5, 3^X7, 2", 2X5X7, 2=X3^ 5=X3,

2'X5, 3', 2^X3X7, 3^X2X5, 2^X3, 7^X2.

Since
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.^

—

— =.00000159; (E)

^—ir =.00000005
;
(F)

9(2P+1)2
.-. Common log. of 3 =.47712124.

(2) To find the logarithm of 6,

Here P =4, and log. P=2 log. 2 =.60205999 ;

_2A_ _,8685^89_6 ==.09650988; (B)
2P+1 9

__I5___.09650988
=.00039716; (C)

3(2P+1)2 3X9'

— =.00000294; (D)
5f2P+])=

^^P =.00000003 ; (E)
7(2P+1)2

log. 5 =.69897000.

The last figure of the term E is taken to the nearest unit.

It is not necessary, however, except as an exercise, to calcu-

lute the common logarithm of 5, since 5=2", and log. 5= log,

10- log. 2=1— log. 2

I i) To find the logarithm of 7.

Here P=6, and log. 6= log. 2+ log. 3 =.77815123
;

_2A_ ^ .86858896
=.06681453; (B) .

2P+1 13

^B__.06682453 =.00013178; /C)
3(2P+1)2 3X13'

^^ =.00000047
;
(D}

5(2P+1)2

log. 7 =.84509801.

(4) To find the logarithm of 11.

Here P =10, and log. P . . . . =1.00000000
;

_2J^ ^.86858896 _ .04136138; (B,
2P+1 21

- = .00003126 (C)
3(2P+1)=



236 KEY TO PART SECOND.

„_1? =,00000004; (D^
5(2P+1)2
log. n =1.04139268.

Article 379.

(P First. No system of logarithms can have a negative base

since the odd powers of a negative number are negative,

and therefore the positive numbers corresponding to the

odd powers of the base would not be represented.

Second. The base of a system of logarithms cannot be 1,

for the simple reason that every power of 1 is 1.

(2) Calling A and A' the moduli of two different systems

whose logarithms are denoted by log. and log.' ; if B and

C are two numbers, from Art. 376, we have

log. B : log'. B : : A : A',

log. C : log'. C : : A : A',

whence log. B : log . C : : log'.B : log'. C,

log. C_ log'. C .

"'"' log. B log'.-B'

that is, llw logarithms of the same numbers, in two different

systems, have the same ratio to each other.

Example. The ratio of the common logarithm of 2 to that ol

10, is -
"°°°°=3.321928 ; and the ratio of the Naperian log-

.30103

arithm of 2 to that of 10, is
^'^'-'^^^^=3. 32 1928.
.Gf3147

(3) Let N and N+1 be two consecutive numbers, the differ-

ence of their logarithms, taken in any system, will Iw

log. (N+I)— log. N.

But (Art. 351), log. (N+i)— log. N= log. i ^"tl
)

= log. I 1-|-—
) , a quantity which approaches to the iog

arithm of 1 (.vliich is zero. Art. 3(J7.) in prooorlion as
N

decreases, that is, as N increases. Hence, 'At difference

of the logarithms of Itro <-nnseculirc niiinhcrj: jf less, as Iht

numbers tlirnnclvts arc greater.
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Example. The difference of the logarithms of 9 and 10 ia

]—.9542425=. 0457575 ; and the difference of the logarithms of

999 and 1000, is 3—.9995655=.0004345.

EXPONENTIAL EQUATION!*.

Articles 382— 383.

(2) 2O'==100, .-. X log. 20= log. 100,

. „ log. 100 2.000000 , „„_„,whence a;=_H_:—= = 1.53724.
log. 20 1.301030

(3) 100=^=250, . . a: log. 100= log. 250,

, log. 250 2.397940 , ,nonh,whence a;= ^ = -=1.19897.
log. 100 2.000000

(3) Since 2'=4, and 3'=27, we easily see that x lies be

tween 2 and 3, and that it is near the former. We also

readily find that it is less than 2.2 ; then let us assume 2

and 2.2 for the two numbers.

First Suppositimi,

x=2 ; log. 2=. 301030
X log. X . . =.601060

true no. log. 5=.698970

error —.097910

Second Supposition.

x=2.2 ; log. 2.2=. 342423

X log. X . . . =.753330

true no. log. 5 =.698970

error. . . +.054360

Difference of results =.152270; diff. assumed nos. =.2;

As .152270 : .2 : : .05436 : .0713, correction,

2.2—.0713=2.1287.

By trial, we find that x is greater than 2.12, and less than 2.13

therefore, let 2.12 and 2.13 be two new assumed numbers.

First Supposition.

x-.=2.\2 ; log. 2.12=.326336

X log. X . . . . =.691832

true no 698970

error . . . —.007138

Second Supposition.

a;=2.13; log. 2.13=.328380

X log. X . . . . =.699449

triie no 698970

error. . . . -j-.000479

Diff. cf results =.007617 ; diff. of assumed nos. =.01.

As .007617 : .01 : : .000479 : .000628 correction.

Hence a;=2. 13—.000628=2.129372 nearly.

(i) a;»^=42. 84.54, log. 42.8454=1.631904.
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Since 3'=27, and 4^=256, we see that x lies between 3 anJ 4,

and that it is near the former. By a further trial it is soon found

to be greater than 3.2, and less than 3.3 ; let these therefore b&

the two assumed numbers.

First Supposition,

r=3.2 ; log. 3.2= .305150

a; log. x . . . =1.616480

true no. . . . =1.631904

error. . . .015424

Second Supposition.

x—3.3 ; log. 3.3= .518514

X log. X . . . =1.711096

true no. . . . =1.631904

error . . . + .079192~

As .094616 : .1 : : .015424 : .0163, correction,

hence a;=2.24-.0163=2.2163 nearly.

By trial we find that ar=2.2163, gives x log. a:=l.631809, but

that a;=:2.2164 gives x log. a;=l.631905, hence a:^2.2164 nearly,

(6) Log. 2=0.301030, and 0.301030X64=19.265920, which
is the logarithm of the number expressing the 64" power
of 2 ; and since the index is 19, the number of places of

figures will be 19+1=20. (Art. 358.)

(7) o'«+<'=c,

(bx-\-d') log. a= log. c ;

or, bx log. a= log. c

—

d log. a

;

, log. c

—

d. log. a
whence x^—B s

b. log. a

(8) ar^.b^'—c,

log. (a"".fc"^)^ log. c
;

but log. (a'"^./)"*)=ma: log. a-\-nx log. h ;

.-. mx log. a-]-nx log. i= log. c ;

or, x(m log. a-\-n log. J)= log. c ;

, log. c
whence a;= 2

.m log. a-\-n log. b'

(9) c'"'=a.J"»-i.

log. (c"«)= log. (a.J"^-")= log. a-\-(nx—l) log. b.

mx log. c

—

nx log. J= log. a— log. b
;

a;(m. log. c—re. log. J)=: log. a— log. b ;

whence x=:i sJ

—

——^'
_

m. log. c

—

n. log. b'
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(10) From the equation rK'-^=n, wc have

{x—y) log. m= log. n, or x log. m—y log. m= log. n
;

dividing hy log. m ; x—y= log. n-^ log. m= log. _

;

m
from this, and the equation x-\-y=a, by adding and divid-

ing by 2, we find x=\{a-\- log, n-^- log. m),

or, x=.^
(
a+ log.

2^ ) .

By subtracting and dividing by 2, we find

y=z\(a— log. re-H log. m)=i ( a— log. —
) .'

\ ml

(11) From the equation a'.by=c, we have log. (a'.J')= log. o

but log. {a'.by)= log. a"-[- log.V)!'=a; log. a+y. log. i.

. . X. log. a+J/ log. b= log. c

;

and my=nx, or ?/=:— ;m

hence x log. a-)-— 1°S- ''^ 1°S- "^ >m
or, m. log. a.x-\-n. log. i.x=m. log. c

;

, ?n. lotr. c
whence a;=:

m. log. a-\-n. log..

6

nx n. log. c

m m. log. a-\-n. log. i'

112) First, log. 2000= log. (1000X2)= log. 1000+ log. 2=

3+ log. 2, and 2'.3'=2000
;

log. (2'. 3")= log. 2'000=3+ log. 2 ;

log. (2' 3')= log. 2^+ log. Z'=x. log. 2+z. log. 3 j

.-. X. log. 2+2. log. 3=3-1- log- 2 ;

and 3z==5x, or z=—

;

hence x. log. 2-\-— log. 3:=3-(- log. 2
;

or, 3 log. 2.X+6 log. 3.a;=3(3+ log. 3)

;

, 3(3+ log. 2)
whence x^- ' = ^

3 log. 2+5 log. 3

end .-5^- 5(3+ log- 2)

3 8 log. 2+5 log. 3'
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(13) Let a'^z, then a'^=z'^, and the equation becomes

22—22=8, or z^—2z+l=9
;

whence 2=±3-|-l=4, or —2.

.-. o'=4, or —2,

hence x log. a= log. 4, or log. (—2), but the last is in;iu

missible (Art, 369) ; also, 4=2^, and log. 4=2 log. 2 ;

.-. X. log. a=2 log. 2, and a;=?i£^.
log. a

(14) Let 2^=z, then 22^=^^ and 224-2=12.

Prom the equation z^-}-z=12, we find 2=:-l-3, the nega-

tive value being omitted (Art. 369) ;

.-. 2='=3, and x log. 2= log. 3 ;

,
log. 3* .477121 , KOHoewhence x^-P— = ^=1.58496.
log. 2 .301030

(15) 2a'''+a2'==a6', divide each side by a'"'

;

or, a"'—2a2^=l, let a-^=z, then

2^—22=1
;

22—22+1=2, and 2=,y2+l ;

2x log. a= log. (^"2+1), or xX2 log. a= log. (^2+1),

whence a=: °" '''^"'i" \
2 log. a

(16) Let a'=z, then z-j—=J, or z^—bi=z—1,

whence z or a'=-±},,Jb'—4=i(6±V6'—4) ;

.-. X log. a.= log. i(i±V°—4)

;

log. -},(bdzJb^—i)
whence x^= ° -^ ^ '.

log. a

(17) Here a;!'=y'(l), and a;3=i/2(2).

Extracting the j/ root of both members of eq. (I), and the

cube root of both members of eq. (2), we have

x=yv, and x=y^.
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« 1
J.

. Vv=v', whence -=S, and x=^y ;

•'•
fy^^y" ' divide each member by y' ;

lyi=h or yi=|
;

cubing each side y^(|)'="g''=3g
;

fl8J Here {a^—h^y^'-<)=(a—by'.

Extracting the square root of both members, we have

whence (x— 1) log. (a'—&')=a: log. (a

—

b) ;

but log. («'—&')= log. [(a+i)(a!—5)]= log. (a+J)

+ log- (i—fc)-

.-. (x— 1)J log. (a+t)+ log. (a—J)f=x log. (a—J) ;

or, X log. ((i+Z/)-t-a; log. (a—A)— log. (a-\-b)— log. (o— 6)

=x log. (a

—

b)
;

oniitting x log. (a—i) on each side, and transposing,

X log. (a+t)= log. (a!+i)+ log. (a

—

b)
;

whence 3;=]-|-- '

—

log. (»+&)

(191 ,(a^—2a^b^+¥y-'=zl(a^—b'>yi^<=(a^—b^)^>^^

_(a^—by
.

and (a-i)=-(fl+5)-»=^?=^';

(a'—&')^"_(g—;.)'''
.

(^2—^2)2 (a+by
'

Extracting the square root of both members, we have

(.a^—b''y__(a—'>y^

a?:Z62 a+b '

but (a2._j2)r^
J
(^a+b)(a—b) ] ''=(a+hy(^a—by

;

(n-\-by(a—by_(a—by
.

(a+b)(a—b) a+b '

dividing both members by (a—6)"^, and multiplying Oy

21
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a-\-b, we have ^°
' ^ =1, or (a-\-by=Mi—b ;

a—b

whence x log. (a-|-i)=: log. (a—i),

and ;c=
'°g- ^"-^^

bg. (a+i)'

(.20) Here xy=jf{l), and xf=y^(2).

v p
From (l)as=jr, and from (2)a;f=v;

.•. Xx=xg , and "=?;

or, 4=P;
a; 5

•. xq =£, or a; ) =i-
;

(f)A'

(21) Let a;'—41+5=2;, then 3^=1200, and z log. 3= log ^
whence z=l°g-li?°°=H:^«l=6.4536.

log. 3 .477121

.-. a;2—4a;+5=6.4536
;

I-—4a;+4=5.4536 ;

a;—2=±2.33,

a;=2±2.33=4.33, oi —0.33.

IHTEREST A H » A K N U I T I E S .

Articles 384—391.

(1) I+r=1.06 and log. 1.06 = .025306

.025306X100=/ log. (1+r) =2.530600

log. P= log. 1 =0.000000

log. A= log. (339.30) =2.530600

(a) This e.xample is similar to the preceding ; if we mult'oh

.025306 by 1000, the product is 25.306000, which is th»
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log. of the amount, and as tho index is 25, the corres-

ponding natural number will contain 2b-\-l=26 figures.

(Art. 358.)

(3) See Art. 386, Cor. 3. For 5 per cent. R=1.05 ; for 6
per cent. R=1.06 ; for 7 per cent. R=1.07; for 8 per

cent., R=1.08.

Tor 5 per cent., i=J^Mll. =:!H^0=14.206 yrs.
j

log. 1.05 .021189

for 6 per cent, <=_Mil_=:!E010=n.8956 yrs.

;

log. 1.06 .025306

for 7 per cent., fc.i5fll_=l3£i^0= 10.2 447 yrs.

;

log. 1.07 .029384

for 8 per cent., t= '"g' ^ ==-J£l^"=9.0064 yrs.
log. 1.08 .033424

(.4) See Art. 386, Cor. 3. Here m=10, and R=1.05.

. , log. 10 1.000000 .„ ,o.• t=—2 =: =47.19 yrs.
log. 1.05 .021189

(5) Let x= the sum, then (Art. 386), M=P.R', and P=a!.R' r

whence ^=^^==1, ^ni . .
^=^1

P x.R' X M'

(6) Let X, y, z, denote the three shares, then we shall have

x+y+z=V ;

also, X. R'"=y.R''=2:.R'', are the equations of condition ;

whence y==&'''''x, and z=K'-~'x

;

.-. x-\-R''-''x-\-'R''-'x=P ;

P
whence x=

l+R°-'+R«-

p
Similarly, y= _ _, and

l+R»-"+R'-' 14-R'^-»-(-R«-»"

(7) If we take out the logarithm of 1.06, and multiply it bjr

20, and take out the number con-esponding thereto, we
shall have 3.20713546. Subtracting 1 from this, and di-

viding by .06, the quotient is 36.785591, which is thu

amount of an annuity of $1, for 20 years, at 6 per cent,

Then multiplying this by 120 the product is $4414.27.
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In finding tlie SO" power of 1.06 the tables of logarithms in

common use give a result too small. The learner may satisfy

himself of this by actually involving 1.06 to the 20"' power. The

brmula for solving the question is found in Art. 390.

(8) See the Formula, Art. 391. R'=(1.05)'°=4.321942, and

i.=.23137746 ;
1— 1=.76862254

;

R' R'

J_ ( 1—1 l =J_(.76862254)=15. 37245, the present
R—iV R'/ .05

value of an annuity of $1, to be paid for 30 years :

15.37245X250=3843.11+.

(9) Here jo=— ( 1—i )
(Art. 392) ; R=1.05, n=10, and

?R" V R'

'

«=20; R'=(1.04)2»=2. 191123 ;

i=.=.45638697 : 1—1=.54361303 ;

R' R'

R"=(1.04)"'=1.480244,

•R"=.05920976, and Ji- ( 1—— ) =9.181138 ;

J R" \ R' /

9.181138X1 12.50=$1032.87-|-.

'JC) The amount of o$ at compound interest for n years, r

being the rate per cent., is a(l+r)".

The amount of an annuity of h$, for the same period, at

the same rate, is i
(^+'")"~^

(Arts. 386 and 390).
r

.-. ?,

^'+'-)"-^=«(l+r)";
)•

or, i(l+)-)"—i=ra(l4-r)» ;

or, i(l+?-)"—ra(l+r)"=t

;

or, (J—ra)(l-i-r)"=6 ;

or, log. (b—ra)-\-n log. (1-fr)= log. b
;

n log. (!+)•)= log- ^— log- (*—''"J !

log. b— log. (6

—

ra)
"

log. (H-rt •

This formula also solves the following problem :
" What sum

must be paid annually to sink a given debt in a certain numboi

of years, tho interest on said debt being payable annually."
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GENERAL THEORY OF EQUATIONS.

Article 396.

Note.— Ai.houjrh tlie Synthetic Mctliod oj Dimsiiin is not explaiiied

lill Arlicio 4U'J, page 35C, yet we shall employ it, instead of the cominoa

method, on account of its conciseness. The Teacher who prefers lo

use the Syntlietic method, can require liis pupils to study Art. 409,

before commencing the theory of equations.

(1) 1—11+23+35 1—1, since i+l is the divisor,

— 1+ 1 2—35

1—12+3.5+0.

Atis. x2—12a:+35=0.

(2) 1—9+26—24 1+3, since x—3 is the divisor,

+3—18+24
1_6+ 8+0
. . a:'—6j:+8=0 ;

whence (Art. 231), a;=4 or 2.

(3) 1±0—7+6 |-t-2, since x—2 is the divisor,

+2+4—6
1+2—3+0.
.-. a;2+2x—3=0, and (Art. 231), x=l, or —3.

(4) 1+2—41—42+360 |+3, since x—3 is a divisor,

+3+15-78-360

1+5—26—120+0
I

—4, since x-\-4 is a divisor,

—4— 4+120

1+1—30+0.
.-. a:=+a;—30=0, and (Art. 231), x=5, or ~6.

(5) 1—3—5+9—2 1+1, since x— 1 is a divisor.

-2, since x+2 is a divisor.
+1—3—7+2
1—2—7+2+0
—2+8—2
1—4+1+0.

.-, k'—4a;+l=0 and (Art 231), .t=2+7'3, or 2—^3,
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Article 398.

(•2) x=2 .. X—2=0,
x=3 .-. X—3=0,
!=—5 .-. x-f5=0,

. . (x—2)(x—3)(a;4-5)=x'—19r+30=O.

(3) x= 3 .-. X—3=0,

x=—2 .-. x+2=0,

x= 7 .-. X—7=0.
... (x—3)(x+2)(x—7)=x'—8x'+x+42=0.

(4) x= .-. X—0=0,
.x=—l .-. x+l=0,

x= 2 . . X—2=0,
x=—

5

.-. x+5=0.
... (x_o)(x+l)(x—2)(x+5)=ar'+4x'—7x=—10x=0

(5) a:=—2 .-. x+2=0,

x=+4 .-. X—4=0,
x=+4 .-. X—4=0.
.-. (x+2)(x—4)(x—4)=:x=—6x2+32=0

(6) x=l+^l X—1—^"3=0, .

x=l—Vl . . X— 1+ J'3=0.

.-. (x—1—V^)(x—l+^/3)=x'—2x—2=0.

(7) x=l +^"2 .-. X—1—^"2=0,

x=l—^2 .-. X—14-V2'=0,

X=2+J3 .-. X—2—^¥=0,

x=2—V3 .-. X—2+^3=0.
.-. (x-l-j2)(x—l+V2)(x-2—V3)(x-2+V3)
=(x2_2x—l)(x'—4x+l)=x''—fit'+Sx=+2x—1=0.

(8) It has been shown, see Art. 398, that the coefficient of

the fourth term is equal to the sum of the products of all

the roots talcen three and three with their signs changed.

The roots with their signs changed are +l!, +1,— 1,—3,
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—4, and the sum of their products taken three and three

is (2X1X—l)+(2XlX-3)+(2XlX—4)

+(2X—IX—3)+(2X—IX—4)+(2X—3X—4)

+(1X—IX—3)+(lX—IX—4)+(lX—3X—4)

+(—IX—3X—4)=—2—6—8+6+8+24+3+4+12—12=29 ; and since x^ appears in the P' term, 29a:^ ia

the fourth term.

(9) It is evidept there will be 7 terms in the required equa-

tion, hence, the middle term will be the 4'*, hence it is re-

quired to find the sum of the products of the numbers 6,

3, 1, — 1, —2, —4, taken three and three with their signs

changed. But the shortest method is to find the product

of the several binomial factors, thus,

(x—5)(x—3)(i— l)(a:+l)(a;+2)(a;+4)

=(x2—8i;+15)(x2+6a;+8)(a;2—l)=a;«—2x5—26x<+28a;'
+145i:'—26a;—120, where the middle term is 28a:'.

(10) We may take any two numbers as the other two roots,

but the equation will be of the simplest form if we sup-

pose the roots to be +.^2, and —^—3, since this

assumption will cause the middle terms of the binomial

factors to cancel each other. Thus,

(i -^"2)(x+V'2)(a:+^'=3)(x—^=3)=(j;2—2)(a;'+3)

=x''+a;=—6=0.

Article 400.

(1) Since x'—2a;—24^0 is the same as x^-]-2x—24=0, ex-

cept that the sign of the 2"^ term is changed, (the fourth

being wanting,) and since the roots of the latter are +4,
. and —6, therefore (Art. 400), the roots of the former are

—4 and +6.

(2) Since x^-\-3x^—lOx—24=0, is the same as x^—3a;'—10a;

+24=0, with the signs of the alternate terms changed,

and since the roots of the latter are 2, —3 and 4. there-

fore (Art. 400), the roots of the former are —2. +3, —4.

Article 401.

(1) Dividing the given equation by x-\-S^x—(—6)1 the quo-

tient is x^—6a;+10^0, of which the roots are 3+^—

1

and 3—J^l.
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(2) Dividing the given equation by x—(—4)=a,-|-4, the quo

tient is x'—4a;-l-l=0, of which the roots are 2-\-Ji, and

2—V3

(3) Since x=Z-}-J%, and a;=3—^2, therefore

{x—^—j2){x—Z+j2)=x^—6a;+7; dividing the given

equation by this, the quotient is x^-{-2x—2^0, of which

the roots are —lrt^3,

(.4) Since one root is 2

—

JZ, therefore (Art. 401, Cor. 1,)

2-|-«y3 is another root,

(x—2-\-^3)(x—2—^'3)=x^—4x-\-l, and dividing '.s

given equation by this, the quotient is x—3 ; he..''.e

X—3=0, and x=-)-3.

(5) Since —;',(3+V—31) is one root of the given equation,

therefore (Art. 401), — 1,(3—^/—31) is another root ;

[a;+.J(3+V"=3'l)][a;+K3-V=3T)]=a;=+x(3)

+ 1[9—(—31)]= a;2+3a;+10, and dividing the gi"«n

equation by this, the quotient K x^—3a;—4 ; hence

x'^—"ix—4=0, and x=\, or — 1.

(6) Since -|-^/2 is one root of the- given equation, therefore

(Art. 410, Cor. 2), —^2 is another root, and three of the

binomial factors of the given equation are

(a;—J2)(ar+V2)(x—3)=a:3—ar3—2a;4-6.

Dividing the given equation by this, the quotient is x" —Iv
4-10 ; hence ac'—7x-|-10=0 ; from which x=2, and 6.

Article 403.

Ex, 2. If we substitute 6 for x in tha equation x'—5*'

—

x

^-1;=0, we have —4:=0, and if we substitute 6 for x, we have

"1-31=0, and since the results have contrary signs, one root lies

aa' woen 5 and 6, that is, 5 is the first figure of one of the roots
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T B A N S F R M AT I N OF EQUATIONS.

Article 405.

(1) Here x''-\-'7x'—ix+i=0 ; let x=J-, then

.1 +1^."—1^4-3=0, multiply by 81, to clear ot fra"-
81 9 3

^^ ^

tions, ),'''-)-63/—108^+243=0.

(2) Here x^+2x^—lx—l=0; ,et a:=?, then
6

^—-{-J^—jy.—1^0, and clearinc; of fractiona
625 126 5

j/<+10j/5—S75y—625=0.

(3) Here x'— 3a;'+4i-+10=0 ; let a;=2y, then

Sy—12j/=+8y+]0=0, or, dividing b^r 2,

4y3_ 6y=i+4y4- 5=0.

(4) Here a;3-|-18x2+99x4-81=0 ; let x=Zy, and change tha

signs of the alternate terms (Art. 400), then

27j/'—18x9y2+99X3y—81=0, or dividing by 27,

y_6y2+ily_3=0.

(5) Here x^—ix'^-\-\x—W=Q ; let a;=|y, then

i-—^-|-.^y—10=0 ; clearing of fractions,

j,3__6^2_(_3^_27o=o.

Articles 406— 407.

()) Here a;'—7a;+7=0 ; let y—x— 1, then x—-y-\-\.

•, (i/+l)'—7(y+l)+7=0, or fJ^Zy^-iyJ^\=0.

(2) Here x''—3x'—I5x2-f-49x—12=0, let y=x—3, .hen

a;=y+3 ;
.-. (y+3)^-3C2/+3)'—15(y+3)2+490/+3)

—12=0, or, by developing and reducing,

y''-|-9j/'+12j/=—14y=0.

(3) Here x^—Gx'^+Sx—2=0, and x=y-\-2.

.-. (y+2)'—6(y-)-2)2-|-8(j/+2;—2=0, or, reducing,

y'—4v—2=0.
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(4) sc'^-{-2px—q=0. Here A=+2p, n=2.

.•. ?-=

—

j> ; hence x=y—p,

substituting ; (y
—

J)y-\-2p(y
—

p)—9=0, or, reducing,

y^—p^—g=0.

Articles 408-410.

(4") Let y=x—3, then it is required to divide the given eqiia

tion, and the successive quotients, by x—3.

1 ±0 —27 —36 (-1-3, since the divisor is a;—3.

-1-3 -)- 9 —54

+3 —18 —90 .-. —90= 1" R
+3 +18

-f6 -f-
.-. 0= 2"'' R.

+3
-\-0 .-. -1-9= 3"' R. Ans. y'-\-9y^—90=0.

\5) 1 ±0 —27 —14 -1-120 (-1-3, since the divisor is a;—3,

-1-3-1-9 —54 —204

+3 —18 —68 — 84 .-. —84= 1" R.

+3 -1-18 —
+6 +~0 —68 .-. —68= 2"'' R.

+3 +27

+9 +27 . . +27= 3"* R.

+3
+12 .-. +12= 4'*R.

Ans. y'+12y'+27j/2—68!/—84=0.

(6) ] —18 — 32 + 17 + 9 (+5, since the divisoi

+ 5 —65 —485 —2340 is i—5,

—2331=: 1" R.—13
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(^) We sliall first diminish tin; roots by 1, and tlien by .2, in-

dicatiiig the remainders after each transformation by

stars.

J —6
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I —6



—6
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Dividing the giveji equation by (a;—3)(ar—3) the quotient is

ii'-|-4, hence x+4=0, and a=— 4.

(3) Here x^— Qx'-{-ix-\-\2=0,

4x^—lSx+4= 1" derived polynomial, and the great-

est common divisor of this and the given equation is x—2;

hence x=-\-2, and -\-2. Dividing the given equation by

(x

—

2){x—2) the quotient is i'-|-4x—3 ; hence a;'-'-|-4x—

3

= ; from which we find x=—^1, and —3.

(4) Here a;^—6x3-[-12x2—10x4-3=0,

4x'— 18x'4-24x—10= 1'' derived polynomial, and the

greatest common divisor of this and the given equation is

x^—2x+l ; but x=—2x-|-l=(x— 1)^, therefore the given

equation has three roots, each equal to 1.

Dividing the given equation by (x—l)(x—^l)(x— 1) the quotient

b X—3, hence x—3=0, and x^3.

The operation of dividing by x— 1 should be performed by syn-

thetic division on account of its brevity, thus,

1 —6 +12 —10 +3 (+1

+1
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If the learner does not readily see that x^-f-*-'

—

2=(x+2)(j:— 1),

et liim place it equal to zero and find the roots.

(7) Here a:<—12x'+50x2—84x+49=0,

4x'—36x2-l-100x—84= P' derived polynomial, and

the greatest common divisof of this and the given equa-

tion is x^—6x-|-7.

Placing tliis equal to zero, vce find its roots are 3-|-^3,

and 3—^2", that is, x^—6x-\-'7={x—S—^'2)(x—3+J2),
hence the four binomial factors of the given equation are

(a>—3—J2)(x—3—72)(x—3+J2)(x—3+^2), and the

four roots are 3+^2, 3+j2, 3—^2, i—Ji.

(8) Here x^—2x^+3x3—7x2-l-8x—3=0,

5X''—8x'-|-9x^—14x-|-8= 1'' derived polynmoidl, and

the greatest common divisor of this and the given equii-

tion is x'—2x-|-l=(x— 1)^, therefore the eq^dtion has

tliree roots, each equal to -|-1.

Dividing the given equation by (x—l)(x—l)(x— 1) the

quotient is x'^-\-x-\-Z, thus,

1 —2 +3 —7 +8 —3 [+1

+1 —1 4-2 —5 +3
""

—

1
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70a;<— 112x'+126j;'—196X+I12
1

1

4x^—81x^+ 1 32x—

5

9

70x<—43oj;'+660j;2—295a; |oj;+32iS

+323x'—53U2+ 99^4- 1 1

2

X by 14, 4522j;3—7476x^4- 1386a;+ 1568

4522x3—2810 lx2+42636a:— 19057

20625x2—412o0x+20625,

or, 20625(x2—2x+l)

x2—2x+l will be found to divide 14x'—87x'+ 132.x—59,
and it is therefore the gi-eatest common divisor required!

(9) Here x«-|-3x=—Bx"—Bx^-f-gx^+Sx-4=0.

6x*4-15x^—24x3—i8x2-|-18x+3= p- derived polynomial,

30x1+60x3—72x2—36x-f-18 = 2"'' derived polynomial.

We find the greatest common divisor of the given equation and

the first derived polynomial is x'—x'—x-j-l : if we put this equal

to zero, it is easily seen that x=], then dividing by x— 1, the

quotient is x^— 1, of which the factors are x-|-l and x— 1, hence

x'-x'—x+l=(x—l)(x—])(x4-l)=(x—l)=(x+l), therefore the

given equation contains x— 1 as a factor three times, and x-\-l as

a factor twice hence three roots of the equation are -\-l, -\-l,

-|-1, and two roots — 1, — 1.

Dividing 'the given equation hy (x

—

iy{x-\-\y, the quotient is

x+4 ; hence x-|-4=0, and x=—4.

Otherwise thus ;

After finding the greatest common divisor of the given equa-

tion, and its first derived polynomial, we may proceed to find the

greatest common divisor of the 1" and 2'"' derived polynomials,

which is X— 1 ; hence, since the 2'"' derived polynomial contains

X— 1 as a factor once, the 1" derived polynomial must contain it

as a factor twice, and the given equation thi-ee times.

Also, by dividing x'—x'—x+l by (x— 1)^, the quotient is x-j-l,

which is therefore contained twice as a factor in the given equa-

tion. The operation of finding the greatest common divisor of

the 1'' and S'"* derived polynomials is quite tedious, but it enables

us to determine that x— 1 is a factor of x^

—

x-—x-|-) without

wiving an equation of the third degree, tlie method of doing

vhich has not yet been explained.
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THEOREM OF STHUM.

Articles 420—427.

(3) Here X = x'—2x'—a:+2, and (Art. til)

Multiplying X by 3, to render the first teim divisible by the
first term of X,, and proceeding according to Art. 108, we luive

for a remainder — l4.r-{-16. Canceling tlie factor -f2, and
changing the signs (Art. 420), we have X2=+7x—8. Multiply-

ing X, by 7 to render the first term divisible by the first term of
Xj, and proceeding as before, the remainder is —81 ; hence
X2=-[-81, and the series of functions is

X = x^—2x^—x+2
X,=3x^—4x—\
X^=7x—8
X3=+81

X, X, Xj Xg
For x^— 00 the signs are — -|- — -|-, 3 var. .•. k =3

a;=+co the signs are + + + -f-, o var. . . k'=0.
• k—k'=2—1=1, the number of real roots.

By substituting the whole numbers from —2 to +3, we find

the roots are — 1, -)-l, and -|-2.

(4) Here X = 8j;'—36.^2+46^;- 15, and (Art. 411),

X,=24x=—72X-I-46, (or ISx^—36.r+23).

Multiplying X by 3, and dividing by Xj, the first remainder is

— 36x^+92^—45 ; multiplying this by 2, and continuing the

division, the remainder is —32a;-l-48=16(

—

2x-\-3), hence X
=2,r— 3. Dividing X, by X^ the remainder is —8, hence X3=
-\-8, and the series of functions is

X = 8a;'—36x2+46a;—15

X,=24a;2—72a;+46

X2= 2a;—

3

X3=+8.

For x=— 00 the signs are 1 1-, 3 var. .•. k =3,
x=:-\- 00 the signs are -|- -]- _|- -|-, var. .•. k'=0

.•. k—k'=3—0=3, the number of real roots.

22
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By substituting the wliole numbers, from to 3, we find thai

one variation is lost in passing from to 1, one from 1 to ii, and

one from 2 to 3.

(5) Here X = x'—3x^—4x-\-n, and (Art. 411;),

X,=3x2_6a;—4.

Multiplying X by 3, and dividing by X,, the remainder is

—]4a;+29, hence Xs,= 14a;—29. Multiplying X, by 14, and

dividing by Xj, the first remainder is -|-3x—56, multiplying thig

by 14, and continuing the division, the remainder is —697, hence

.5Tg=-j-697, and the series of functions is

X = x'—3x^—4x-\-U

X,= 3x2—6x—

4

X2=14a;—29

X3=+697.

For x^— OD the signs are ] \-, 3 var. .•. K =3,
ar=-|- OD the signs are -|—|—|—[-, var. .-. k'=0.

.-. k—k'=3—0=3, the number of real roots.

By substituting the vs^hole numbers from —2 to -]-4, we find

tl at one variation is lost in passing from —2 to —1, one from

-f 1, to -\-2, and one from -f-3 to -\-4.

(6) Here X=x^—2x—6, and X,=3a;2—2.

Multiplying X by 3, and dividing by X,, the remainder fs

—

4x— 15, hence X2=4x-|-15. Multiplying X, by 4, and divid-

ing by Xg, the first remainder is —45a;—8 ; multiplying this by

4, and continuing the division, the remainder is +643, he.ice
''j=—643, and the series of functions is

X = x'—2a;—

6

X,=3x'—

2

X2=4x-1-15

X3=—643.

For x^=— OD the signs are 1 , 2 var. .•. k =2,
x^+ QD the signs are ++ H , 1 var. .-. k'=l.

.•. k—k'=2— 1= 1, the number of real roots.

We also find that one variation is Inst in passing from 2 to S

therufore the root lies between 2 and 3.
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(7) Here X=a;3— 15a;—22, and X,=3a;=— 15, or x^—5.
,

Dividing X by X,^.r'—5, the remainder is —Ita—22=2
(—5x—U), hence X2=+5x-|-ll. Multiplying X, by 5, and

dividing by X^, the first remainder is — 11a;—25; multiplying

this by 5, and continuing the division, the remainder is —4,

hence X^—
|
4, and the series of functions is

X — a;'—15a;—22

X,= x^—6

Xj=5a;+ll

X3=+4.

For x=— OD the signs are ] 1-, 3 var. . . k :=3,

as=-|-ao the signs are ++ + +>0 var. .. k'^0.

.'. k~k'^3—0=3, the number of real roots.

By substituting the whole numbers from —3 to -|-5, we find

that two variations are lost from —3 to —2, and one from -|-4 to

4-5 ; we also find that —2 is a root. For a:=—2.', there are

three variations, and for x=—2| there are two variations, hence

one root lies between'—2j and —2^.

(8) Here X = x'>-\-x^—x^—2x-]-4, and (Art. 411),

X,=4a;3+3a:'—2:i;—2.

Multiplying X by 4, and dividing by X,, the first remainder is

^;'—2a;-—6a;-|-16, multiplying this by 4, and continuing the divis-

ion, the remainder is —llx^—22a;+66= ll(

—

x^—2a;-|-6), hence
X2=a;'-|-2a;—6. Dividing X, by Xj the remainder is -(-32a;

—32=32(a;— 1), hence X3=—a;+l. Dividing X^ by Xg, the

re'iainder is —3, hence Xj=-f-3, therefore the series of func-

Ijpis is X = x^-{- a;'

—

x'—2a;-j-4

X , =4a;'-|-3x=—2a;—

2

Xj=x2-[-2x—

6

X,=-x+l
X,=+3.

For x^— 00 the signs are -| 1--]--|-, 2 var. .•. k =2.
a;=-|- OD the signs are -}--|--| \-,2 var. .-. k'=2.

.•. k—k'=2—2=0 ; hence there are no real roots.

(9) Here X=x''—4a;'—3x-l-23, and X,=4a'—ISa;'—3.

Multiplying X by 4, and dividing by X,, the remainder is
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— 12a;5—9r+89, iieuce X^=-\--i2x^-\-9x—89. Multiplying X,

by 3, and dividing by X^, the first remainder is —45£^-|-8to—9,

multiplying this by 4, and continuing the division, the remainder

is 4-491X— 1371, hence X3=—491;r+I371. Multiplying X^ by

491, and dividing by Xg, the first remainder is 20871x—43699,

multiplying this by 491, and continuing the division, the remain-

der is -|-7157932, hence X^=—7157932, and the series of funo-

lions is X = x"— 4^3—3;t;+23

Xj=4x'— 12^:2—3

X2= I2a;'4-9x—89

X3=—49la;+1371

X,=—7157932.

For x=— 00 the signs are -] \-
-\ , 3 var. .-. k=3,

:c=-l- 00 the signs are -\—|—|

, 1 var. .". k'^l,

.". k—k'=3—1=2, the number of real roots.

By substituting the whole numbers from 1 to 4, we find that

one variation is lost in passing from 2 to 3, and one from 3 to 4.

(10) Here X=a;''—2a;3—7x2+10a:+10, and Xj=4a;»—6x'
—14^-(-10, or 2x^—3x^—7x+5.

Multiplying X by 2, and dividing by X,, the first remainder is

—x^—7x^-|-15a;+20, multiplying this by 2, and continuing the

division, the remainder is —17x--|-23x-l-45, hence Xj:=17j;-'

—23x—45. Multiplying X, by 17, and dividing by X^, the first

remainder is —5x^—29x+85 ; multiplying this by 17, and

continuing the division, the remainder is —608j:+ 1220=4
(—152x4-305), hence X3=162x—305. Multiplying Xj by 152,

and dividing by Xj, the first remainder is 1689x—6840, multiply-

ing this by 152, and continuing the division, the remainder is

—524535, hence Xj=:+524535, and the series of functions is

X = x''—2x'—7x2-1-10x4-10

X,= 2x5—3x3—7X-1-5

X2=17x2—23a>—45
X3=I52x—305

X^=4-524535.

For x^— 00 the signs are -| 1 \-, 4 var. .. k =4,

x=-l-ao the signs are -j- -j-
-f- -J- +> var. .-. k'=0.

.'. k—k'=4—0=4, the number of real roots.

We also find that one variation is lost in passing from —3 to

—2, one in passing from — 1 to 0, and two in passing from 4-2
to 4-3.
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(11; Here X=xs— 10a;'+6x-!-l, and X,=5x''— -SC-c^-l-e.

Multiplying X by 5, and dividing by X,, the remainder ia

—20a;'4-2-1^+5, hence X2=20a"'—24x—5. Multiplying X, by

i, and dividing by X^, the remainder is —96i'-|-5x-|-24, hejice

X^=9Gx'^—ox—24. Multiplying Xj by 24, and dividing by X,,

the first remainder, is 25a;'—456a;—120; multiplying this by 96,

and continuing An division, the remainder is —43tiola;— 10920,

hence X,=4365la;+10920. Multiplying Xj by 43651, and di-

viding by X^, the first remainder is —1266575x—1047624 ; mul-

tiplying this by 43651, and continuing the division, the remainder

> —1372624203024, hence Xj=+1372624203024. It is not

necessary, however, to obtain any thing more than the sign of the

'ast function.

The series of functions is

X = x-"^— 10a:'-f6a;4-l

X,= Sa;"—30a;2-f6

X2=20x'—24a;—

5

X3=96x'-'—5a;—24

X5=43651a;+10920

x,=+.

For x=— QD the signs are 1 j 1-, 5 var. .•. k =5,
" x=-\- OD the signs are +++++ +>" var. .-. k'=0.

.-. k—k'^5—0=5, the number of real roots.

By substituting the whole numbers from —4 to -{-4, we find

tnat one variation is lost in passing from —4 to —3, two in pass-

ing from — 1 to 0, one in passing from to 1, and one in passing

from 3 to 4.

RESOLUTION OF NUMERICAL
EQUATIONS.

RATIONAL BOOTS.

Article 429.

'2) Here a;'—7a;-'-l-36=0. -\-l and — 1 are not roots.

Limit of positive roots =1-|-7=S. .

Changing the signs of the alternate terms C.Art. 418), the

equation becomes a;^-|-7a;-±0a;—36^0.
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.. limit of negative roots =—(l-|-^36), or —6.

Last term -|-36

Divisors . . . +6, +4, + 3, + 2, — 2, — 3, —4
Quotients . . +6, +9, +13, +18, —18, —12, —9
Add . . . . +6, +9, +12, +18, —18, —12, —9
Quotients . . +1, * + 4, + 9, +. 9, + 4, *

Add —7 . . . —6, — 3, + 2, + 2, ~ 3.

Quotients . . — 1, — 1, + 1, — 1. + 1

Add +1 . . . 0, 0, + 2, 0, + 2.

Hence tlie roots are +6, +3, and —2.

(3) Here a;'—e^^+llo;—6=0, and +1 is found to be a loot,

Limit of positive roots =1+6^7.
Limit of negative roots =0, since when the signs of the alter-

nate terms are changed, all the terms are positive, therefore, thia

equation has no positive root, and therefore the given equation

has no negative root (Art. 402).

Last term —6.

Divisors .

Quotients

Add +11
Quotients

Add —6 .

Quotients

Add+1 .

+ e, +3, +2
— 1, —2, —3
+ 10, +9, +8

*, +3, +4
—3, —2
—1, —1

0, 0.

Hence the roots are +3, +2, and 1.

(4) Here a?'+a;'—4a;—4--=0,, and — 1 is found to be a root.

Limit of positive roots l+,^4=3.

Limit of negative roots —(1+4)^=—5.

Last terra —4.

Divisors +2, —'2, —4 Tli«refore the root*

Quotients —2, +2, +1 are +2, —2, — 1.

Add —4 —6, —2, —3
Quotients —3, +1, *

Add+1 —2, +2
Quotients — 1, —

1

Add+1 0, 0.



KATIONAL ROOTS, 263

(5) Here x'—3x'—46.x'—''2=0, and -|-1 and —1 are not

roots.

Limit of positive roots 72, of negative roots —{i-\-iJ i^)i

or —8.

Last term —72
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1,+ 2,-11,— 3,

Quotients,

• *j *j »j Ij

•^1 0, *, *, *.

Add+ ],

0,4- 1, 0, 0, -f 3,-10,- 2,

.-. -\-(}, -j-3, and —4 are the roots.

(,7) Here x''—lOx'-f35x=—50x+24=0, and -fl, is found tc

be one of the roots (Art. 429, Cor. ]).

The limit of the positive roots is 24, and since when we change

the signs of the alternate terms, all the terms are positive, this

equation has no positive roots, (Art. 402, Cor. 1), therefore the

given equation has no negative roots.

Last term -|-24.

Divisors. . . . +2-1, -{-12, + 8, + 6, + 4, + 3, + 2'.

Quotients . . . -f 1, -|- 2, -|- 3, -j- 4, -f- 6, -(- 8, -\-12.

Add —50 . . . —49, —48, —47, —46, —44, —42, —38.
Quotients. . . *, — 4, *, *, _ii, _]4, _i9.
Add -1-35 —31,
Quotients *,

Add— 10

Quotients

Add -1-1

-1-24,-1-21,-1-16.

+ 6, -I- 7, 4- 8.

— 4,-3,-2.
— 1,— 1,— 1.

0, 0, 0.

.•. -\-4, -\-S, -\-2, and -|-1, are the roots.

(8) Here x^-\-4x^—x^—\6x—12=0, and —1 is found to be a

root.

Limit of positive roots 14-^16=5 ; of negative roots

—(l4-4)=-5.

Last term —12.

Divisors. .

Quotients .

Add— 16 .

Quotients .

Add —1 . .

Quotients .

\dd -|-4 . .

Quotients .

Add 4-1 . ,

. . +2,

4- 4, 4- 3, 4- 2, — 2, — 3, — 4.

— 3,— 4, — 6, -{- 6, 4- 4, 4- 3.

—19, —20, —22, —10, —12, —13.

*,—11,4- 5,4- 4, *.

-12,4- 4,4- 3.

-6,-2,— 1.

-2,4-2,4-3.
-1,-1,-1.

0, 0, 0.

,
—3, and — ], are the roots.
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f9) Here x'—4,t'—I9,r2+46;c+120=0, and -f-1 and —1 are

found not to be roots.

]jimit of the positive roots I-|-19=20 ; of the negative

roots --(1+^T6), or —8.

Last term -\-V20.

DiviscTS 4- 20, +15, +12, +10, -f 8, + 6, + 5, + 4, + 3,

+ 2, — 2, — 3, — 4, — 5, — 6, — 8.

Quotients,+ 6, + 8, +10, +12, +15, +20, +24, +30, +40,

+ 60, —60, —40, —30, —24, —20, —15.

Add +46, + 52, +54, +56, +58, +61, +66, +70, +76, +86
+106, —14, + 6, +16, +22, +26, +31.

Quotients, *, *, *, *, *, +11, +14, +19, *,

+ 53, + 7, — 2,-4, *, *, *.

Add —19 -8,-5, 0,

+ 34,-12,-21,-23.

Quotients *, — 1, 0,

+ 17, + 6, + 7, *.

Add —4 —5,-4,
— 13,+ 2,+ 3.

Quotients — 1, — 1,

*,— !,— 1.

Add +1 0, 0,

0, 0.

.•. +5, +4, —2, and —3 are the roots.

riO) Here a;''+03;'—27a;2+14a;+120=0, and +1 and —1 are

not roots.

Limit of positive roots 1+^^27 or 7 ; of negative roots

—(1+27) or 28.

Last term +120.

DiTisors, + 6, + 5, + 4, + 3, + 2, — 2, — 3, — 4, — 6,

— 6,-8, —10, —12, —15, —20, —24.

Quotients, +20, +24, +30, +40, +60, —60, —40, —30, —24,

—20, —15, —12, —10, — 8, — 6, — 5.

Add +14, +34, +38, +44, +54, +74, —46, —26, —16, —10,

— 6, — 1, + 2, + 4, + 6, + 8, + 9.

23
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Quotients, *, *, +il, +18, +37, +23, *, + 4, + 2.

_4_ 1 * * * *,*,*.
Add -27 —16,— 9, +10, — 4, —23,-25,

-26.

QuotJer.ls — 4, — 3, + 5, + 2, *, + 5.

*.

Add — 4, — 3, + 5, + 2, + B.

Quotients — 1, — 1, *, — 1, — 1.

Add +1 0, 0, 0, 0.

.-. tlie roots are +4, +3, —2, and —5.

(11) Here a;'+a;'—29x5—9x+180=0, and +!, and —1 are

not roots.

Limit of positive roots, 1+^29, or 7 ; of negative roots,

—(1+29)=—30.

Last term +180.

Divisors, + 6, + 5, + 4, + 3, + 2, — 2, — 3, — 4, — 6

— 6, — 9, — 10, — 12, —15, —18, —20, —30.

Quotients, +30, +36, +45, +60, +90, —90, —60, —45, —36,

—30, —20, —18, — 15, —12, —10, -9,-6.
Add —9, +21, +27, +36, +51, +81,-99, —69, —54, —45,

—39, —29, —27, —24, —21, —19, —18, —15.

Quotients, *, *, + 9, +17, *, *, +23, *, + 9,

*, *, *. + 2, *, *, *, *.

Add —29 —20, —12, — 6, —20.

—27,

Quotients — 5, — 4, +2, +4.
*^

Add+1 + 4,-3, +3, +5.
Quotients ... . — 1, — 1, — 1, — 1,

Add+1 0, 0, 0, 0.

. . the roots are +4, +3, —3, and —5.

(12) Here x^—2x''—4j;+8=0, and +1 and — 1 are not roots.

Limit of positive roots, 1+^4=3 ; of negative roots

-(1+4)=—6.

Last term +8.

Divisors +2, —2, —4,

Quotients +4, —4, —2,
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Add —4 0, —8, —e.

Quotients 0, -f-4. *

Add —2 —2, -j-2.

Quotients — 1, — 1.

Add +1 0, 0.

.•. -1-2 and —2 are roots, and by dividing the (<iven equa-

tion by (x

—

2)(x-\-2), the quotient is x—2, hence x—2=0,
and x^=-\-2, .-. the equation has two equal roots, each of

which is 4-2.

(13) Here x^-l-Sa;'—8x4-10=0, an-. -1-1, and —1 a'l not roots.

Limit of positive roots, l-f-^^S, or 4 ; of negative roots

~(l-|-8)=-9.

Last term -}-I0.

Divisors -|-2, — 2, — 5.

Quotients 4-5, — 5, — 2.

Add—8 —3, —13, —10.

Quotients *, *, 4- 2.

Add 4-3 4-5.

Quotient — 1.

Add 4-1 0.

. . —5 is a root, and dividing the given equation bv x-

(—5)^x-|-5 the quotient is x^—2x4-2, hence x^—2x4-2

=0, and x=l±V

—

^

(14) Here x^—9x'-l-17x24-27x—60=0, and -f 1, and — ) ar«

not roots.

Limit of positive roots, 1-1-9=10 ; of negative roots,

—(l+s/27), or—4.

Last term —60.

Divisors, 4-10, 4- 5, -f- 4, -}- 3, 4- 2, — 2, — 3, — 4.

Quotients, — 6, —12, —15, —20, —30, 4-30, -{-20, 4-15.

Add 4-27, 4-21, 4-15, 4-12, + 7,-3, 4-57, 4-47, 4-42.

Quotients, *, -f 3, -f- 3, *, *, *, *, «.

Add 4-17

Quotients

Add—

9

Quotients

Add 4-1

. 4-20, 4-20,

. 4- 4, 4- 5,

. — 5, — 4.

— 1,— 1.

0, 0.
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. . 4-5, and -j-4 are --oots, and by dividing the given equa.

tion by (x—5)(a:—4), tlae quotient is x''—3, hence x==3,

and x=±V3. •' the four roots are -\-b, -|-4, -\-^'i

(15; Here 2a:3_3a;2-j-2x—3=0.

Let a;=?, then the transformed equation (Art. 405, Cor.)

is y'—3j/^-l-4y—12=0, and -\-\, and —1 are not roots.

Limit of positive roots, 1-4-3=4, and since when the signs of the

alternate terms are changed (Art. 400) all the terms are positive,

liieiefuf-e the given equation has no negative roots.

Last term — 12.

Divisors -|-4, -)-3, -j-S.

tiuotients —3, —4, —6.

Add -f-4 +1, 0, —2.

Quotients *, 0, — 1.

Add —3 . . • —3, —4.

Quotients — 1, —2.

Add-fl 0, —1.

.-. -(-3 is a root of the transformed equation, and dividing

by y—3 the quotient is i/'-l-4, hence ^^-(-4=0, and

y=±V'^==b2J^.
.-. y=-4-3, -f2v:i:i, -v^;

la

(16) Here 3a;'—2x2—6:>:-|-4=0.

Let j;=i, then the transformed equation (Ait. 405, Cor.)

IS !/*—2y2—18y-|-36^0, and -f-l, and — 1 are not roots.

Limit of positive roots, 1-|-18^19 ; of negative roots,

-(l+jTS), or —6.

Last term -(-36.

Divisors,

^-18, -fl2, + 9, -f 6, -f 4, -f 3, -f 2, — 2 — 3, — 4, — 6

Quotients,

+ 2, + 3, 4- 4, + 6, -f 9, +13, +18, —IS, —12, — 9,-6



HATIONAL ROOTS. 269

Add— 18,

-16, —15, —14, —12, — 9,— 6, 0, —36, —30, —27, —24
Quotients,

*, *, *,— 2, ^— 2, 0, +18,+10, *,+ 4.

Add —2 .... — 4, -4,-2, +16, + 8, +2.
Ciuotionts ... *, *, — 1,— 8, *, *.

'idd+l 0,-7.

.-. -|-2 is a root of the transformed equation, and dividing

by y—2 the quotient is y'^— 18, hence y'—18=0, and

2/=±3V2.
.-. i/=2, +3^2, —3^2.

(17) Here 8a;3—26a;'+l 1x4-10=0.

Let a;=:i, then the transformed equation is

8

y'—26i/--|-88i/+640=0, and -[-1 and — 1 are not roots.

Limit of positive roots l-[-26=27 ; of negative roots

-(l+>/~640), or— 10.

Last term -|-640.

Divisors, -|-20, +16, +10. +8, +5, +2, —2,

—5, —8, —10.

Quotients, +32, +40, +64, +80, +128, +320, —320,

-128,-80, —64.

Add +88, +120, +128, +152, +168, +216, +408, —232,

—40, +8, +24.

Quotients, +6, +8, *, +21, *, +204,-116,

+8, —1, *.

Add—26. —20, —18, —5, +178,-142,

—18, —27, *.

Quotients, —1, *, *, +89, +71,
* *.

Add+1, 0, +90, -{-72.

.•. +20 is a root of the transformed equation, and by di-

viding by X—20, the quotient is !/^

—

Qy—32, heuca

y2_6y—32=0, and y=^±Ji\.
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•• i'=+20, and 3±j41 ;

x=l=+l, or |(3±V^)-
8

OS) Here 6a;'—25x3+26a;2+4a>—8=0.

Let x==!i, then the transformed equation is

6

y—25y'+1562/2_|_i44^_1728=0, and +1 ina —1 are

not roots.

Limit of positive roots 14-25=26 ; of negative roots

—(1+^T44), or —7.

Last term —1728.

Divisors, -(-24, +18, +16, +12, +9, +8, +6,
+4, +3, +2, —2, —3, —4, —6.

Quotients, —72, —96, —108,-144, —192,-216,-288,
—432, —576, —864, +864, +576, +432, +288.

Add +144, +72, +48, +36, 0, —48, —72, —144,

—288, —432, —720, +1008, +720, +576, +432.

Quotients, +3, +2, *, 0, *, —9, —24,

— 72,-144,-360,-504, —240, —144, —72.

Add +156, +159, +158, +156, +147, +132,

+84, +12, —204,-348, —84, +12, +84.

Quotients, *, *, +13, *, +S2,

+21, +4, —102, +174, +28, —3. —14.

Add—25 — 12, —3,
—4, —21, —127, +149, +3, —28, —39.

Quotients — 1, *,

—1, —7, *, *, —1, +7 •

Add +1 0,

0, —6, 0, +8.

.. y=+12, +4, and —3 ; and by dividing by {y— 12)

(y—4)(y+3), the quotient is y— 12, lience y—12=0, anJ

2/=12.

.-. x=l=-\-'2, +2, +§, and —},.

a9) Here x'—9a^+'/a;2+yx— *','=±:0.
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Let a;=-i, then the transformed equation is

2/^—18j/'+452/'-^+ 1 08^^—324=0.

Limit of positive roots, l-(-18=19 ; of negative roots,

—(1+VT08), or —6.

Last term —324.

Divisors, + 18,+ 12,+ 9,+ 6, -f 4,+ 3,+ 2,

— 2,— 3,— 4,— 6.

Quotients, — 18, — 27,— 36, — 54, — 81, —108, —162,

+ 162, +108, + 81,+ 54.

Add +108, + 90, + 81,+ 72, + 54, + 27, 0,— 54,

+270, +216, +189, +162.

Quotients, *, *, + 8, + 9, *, 0, _ 27,

—135, — 72, *, *.

Add +45 + 53, + 54, + 45, + 18,

— 90,— 27.

Quotients, *, + 9, + 15, + 9,

+ 45, + 9.

Add—18 — 9, _ 3, _ 9

+ 27, — 9.

Quotients *, ], *^

*,+ 3.

Add +1 + 4, 0.

. . +3 is a root of the transformed equation.

The first derived polynomial of the transformed equation is

4y3—54^2+90^+108 ; now we shall find that y—3 is a divisor

of this as well as the transformed equation, therefore +3 and

+3 are two roots of the transformed equation (Art. 414), and if

we divide it by (y—3)(y—3) the quotient is y'—12y—36, henca
yi_]2y—36=0, and J'=6±6^2^.

.-. 2/=+3, +3,+6+6V2',+6—e^i'.

^=+2' +1' +3+3V2, +3—3V2.

Note.— This example may be solved by Art. il4, but tlio above ii

Ihe shortest method.
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HORNER'S METHOD OF APPROXIMATIOS.

Articles 430— 434.

,1) x^-\-6x —12.24=0

r

1 -f5 — 12.24 (1.8=a;. It is readily found lliat

+1 +6 ''^ is greater tlian 1, and

-j-6 — 6.24 less than 2, hence 1 is

-\-l + 6-24 the integral part of the

1 4-7* root.

(2)

.8

+7.8
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32 4-37.16

4 +36* — 2.09

2.8 + 2.09

+38.8 .0

4 +41.6*

.2=.05X4

+41.8

(4) 8r'—120a; +394.875=0.

8 _120 +394.875 |10.125=

+ 80 —400

— 40 — 6.125*

+ 80 + 4.08

8 +40* — 1.045

.8 + .8352

+40.8 — .2098

,8 + .3098

8 +41.6* .0

^16_

+41.76

.16

8 +41.92*

.04=.005X8

+41.96

«5) 5x'— 7.4j! —16.08=0.

5 — 7.4 —16.08 |2.68j

+10 + 5.3

+ 3.6

+10
6 +12.6*

3

+15.6

3

6 +18.6*

.4=.08X5

19.0.

—

:
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(6) X''+X —1=0.
—1 1.618034.

0000^6^.000034 nearly.

] 2.236*.

(1) x^—6x +6=0.
1 _6 -f6 |4.73205=J.

+4 —8
—2 —2
+4 +1.89

1 +2*
.7

+2?7
.T_

1 +3.4* .jOOT]^
(,0205_

.03 3.46

+3.43

.03

—
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+13.4

4

-1-13.8

4_
-1-14.2*

.0^

+14.25.

'5.52

+52.88*

7125

+53.5925

(9) 2x'—50a;+32.994306=0.

CO)

±0
+8

-50

32

+8
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R
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.04 .007878

<")

2.62*
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.09
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.09 .02222

1 +24.67* 145.95343

.008 .02222

24.678 +145.97665*

.008

24.686

.008

1 +24.694*

(14) a:'+]2a;2_i8r=216.

+12
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(15) a;<—8a;3f20a;2—15a;+.5=0.

-1-20 —15 . -f .5 |1.28.1724=a
-1-1 — 7 4-13 —2.0

—1.6*

-1-1.0496

— .4504*

.4255385

248616*

210536

—7
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.D

8.3



HOKiJIER'S METHOD OF APPROXIMATION. SSI

.09 .1564 .07645

19.38

.09

19.47

.09

84.629

.156

—107.79111*

.0059

84.785 —107.7852

.156 .0059

1 +19.56* +84.941* —107.7793.

(18) 2x«+5a;3+4>;2+3a;=8002.

+ 3

959

+ 5

14

IF
14

33
14

+ 4

133

137
231

—8002 (7.33555

+6734 (40314

962
2576

—1268*
1125.7932

368
329

47
14

8 +61*

697*
18.48

715.48
18.66

3538*
214.644

3752.644
220.242

61.6

6

62.2

6

62.8

6

734.14
18.84

3972.886*
22.646514

— 142.2068*

119.86597542

—22.34082458*
20.11015620

"2^23066838*

2.01310385

3995.632514
22.703682

-63.4*

.OS

63.46

.oe

63.52

.95

63.58

.06

752.98*

1.9038

754.8838
1.9056

756.7894
1.9074

4018,

3.

236196*
79505

4022,

3,

03124
79665

.21750453

.20133125

402666) 1623328(
1610665

758.6968*
.32

759.01

32

759.33
.32

4025 ,82789*

3798

4026,

4026

4026

2077
3798

5875*
38

625"

38

12663
12080

583
403

180
161

3 +63.94* 759.66* 4026.663* a:=7.3355540314.

Remark.— It is sometimes convenient by drawing lines, as in tha

preceding solution, to render separate and distinct the operation for find-

ing each successive figure.

(19) a:«+4a;*—SajS+lOar^i-2x=962.

1+4 — 3 +10 — 2

3 +21 54 +192

+7 +18 +64 +190
24

—962
1
3. 385777

+570

—392* rover
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.4 .4 7.770 2.754

43.6
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a;4_6x2—16x+21=0. ( 3, or],o'
(8)
^ ' (See Art. 429).

(9) a:<—19a;3_[_i23a;2_302a;+200=0.

•=i- -2ztv'—3.

n. 02803,

J
4.00000,

I

6.57653,

I 7.39542.

(10) a:"—4a;'—3x2—4a:+l=0.

The two real roots are a;=4.7912 and a:=.2087.

(11) a;'—36x2+72a;—36=0.

(12) xi+xs—24a;=+43x=21.
(See Art. 429).

(13) x"—27x'+162a;2+356j:=1200

(14) a;'"-17x^+20x—6=0.

f

0.872983,

1.267949,

4.732050,
—6.872983.

C 1, or 3.

x= \ 1.1400549,

(—6.1400549.

r 2.05607,

_ I — 3.00000,
*~) 13.15306,

I 14.79085.

-\
4.6457513,

.6457513,

2±V2"-

(15) a:<_li2.3x'+1243.53j;'—2244.341a;+1112.111=0.

a;=l, or 1.1, or 10.1, or 100.1.

Article 4 35.

to extract thekoots of n u m b e r s b

y

Horner's method.

(.2) To find the cube root of 34012224.



HORNER'S METHOD OF APPROXIMATION. 2SS

2
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(5) To find the fifth root of 68641485507.
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183.0 SOx 186.0

409.981 results 424.328

14.347 : .1 :: 10.019:0.163

By trial x is found to be greater than 6.17, therefore let a:=6.17

and 6.18.

6.17 X 6.18

234.885 x' 236.029

185.10 30a; 185.40

419.985 results .... 421.429

1.444 : ,01 : : .015 : 000103.

.-. a:=6.17+.000103=6.170103 nearly.

(3) 144x5—973x=3 19.

2 X 3

11.52 144x3 3888

—1946 —973x —2919

— 794 results +969
3

+ 969 2_ 319

1763 : 1 :

:

650 : .3

x=3—.3=2.7.

2.7 X 2.8

2834.352 144x3 3161.088

—2627.1- —973x —2724.4

+ 207.252 results + 436.688

As 229.436 : .1 :: 111.74^:.048

.-. x=2.7+.048=2.748, and by trial 2.75 is found

to verify the equation exactly, hence x=2.75.

In the application of the rule of Double Position to the solu-

tion of equations, the first correction is generally too small, as in

the two preceding solutions, and as may be seen more particularly

in the solution of example 5.

To see the reason of this, it must be noticed that the sums, or

the differences, of the higher powers of numbers, increase very

rapidly as the numbers increase. Hence if two numbers equally

distant from the true number, are substituted in any equation

containing the second or higher powers of the unknown quantity

the result, arising from the substitution of the greater number,

will be farther from the true result than that obtained by the sub
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stitution of the smaller. And hence, by the operation of the

rule, the correction will give for the true number a number too

small: To illustrate this by an example, suppose we have the

equation

x'—x=24, of which the root is 3.

Let us notice the results obtained by the substitution of 2 and

4 for X.

2 X 4

8 x^ 64

— 2 —X — 4

6 results 60

— 18 errors +3t>

Difference of the errors ==36—(—]8)=54,

then 54 : 2 : : 18 : |.

Now the true correction is 1, but we obtained | because al-

though the- suppositions, 2 and 4, are eqtially distant from the true

number, yet the corresponding results are unequally distant from

it. Now the rule proceeds on the hypothesis that the errors of

the results are proportional to the errors of the suppositions.

But this is never exactly true, and is only nearly so when each

of the suppositions is very near the true number. Attention to

•;his principle will often guide the pupil in selecting trial numbers

for the second operation.

(4) a;'+10x2+5a;=2600.

By trial we find that 11 is so near the true number that we may
a' once make trial of 11 and 11.1.

11 X 11.1

1331 a* 1367.631

1210 10x= 1232.1

65 bx 55.5

2596 results 2655.231

— 4 errors -[-55.231

59.231 : .1 : : 4 : .006

.-. a;=:ll-f-.006=l 1.006 nearly.

11.006 X 11.007

1333.179188 a;' 1333.542617

1211.32036 10a:' 1211.54049
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55.030 5x . .

3599.529548 results

.470452 errors

.588559 : .001 :

, . . . 55.035

. . . 2600.118107

. . . +.118107

.470452 : .00079

(6)

.-. a:=11.0064-.00079==l 1.00679.

2a;'+3a;2—43,>=10.

2 2x3 Ig

3 +3a:2 12

—4 —ix — 8

+1 results +20
—9 errors -t"'"

19 : 1 : : 1 : .5 nearly.

.•. a;=l+.5=1.5 nearly.

By trial, however, we find that 1.6 is too small, and 1.7 too

great, let these therefore be the next two assunied numbers.

1.6 X 1.7

+8.192 2x' + 9.826

+7.68 +3a;2 _1_ 8.67

—6.4 —ix — 6.8

+9.472 results +11.696

— .528 errors + 1.696

2.224 : .1 :: .628 : .024 nearly.

. . a;=1.6+.024=1.624.

By trial we find 1.624 is too small, and 1.625 too great; using

these as the next two assumed numbers, we readily find the next

two figures of the root.

(6) x*—x^+2x''+x=4.

It is easily seen by inspection, that a; is a little more than 1

and by trial it is found greater than 1.1, and less than 1.2; le'

{hesBj therefore, be the two assumed numbers.

1.1 X 1.2

+ 1.4641 +3!^ +2.0736

~].331 — x' —1.728

+2.42 +2x^ +2.88

+1.1 + X +1.2

+3.6531 results +4.4256
— .3469 errors ......+ .4256

7725 : .1 : : .3469 : .045 nearly.

25
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By trial x is found greater than 1.146, and less than 1.147.

By repeating the operation with these numbers, we readily find

the next two figures of the root.

(7) x'-\-x^+2x^—x=4.

It is easily seen that a; is a little more than 1, and by trial it is

found less thai 1.1 ; therefore let 1 and 1.1 be the two assumed

mimbers

1

1

2

—1

+3
—1

1.U51

1.1

1.4641

1.331

2.42

— I.l

results -{-4.1151

errors -\- .1151

: : 1 : .09 nearly.

+ x' .

-f a;' .

-j-2x^ .

— X .

By ,iial a; is found to be greater than 1.09, therefore let 1.09

and 1.1 be the next two assumed numbers.

1.09 1.1

1.4)1581 x^ 1.4641

1.2950^9 + x' 1.331

2.3762 -\-2x^ 2.42

—1.09 — X 1.1

-{-3.99281 results -1-4.1151

— .00719 errors -|- .1151

.12229 : .01 •: .00719 : .00059 nearly.

.-. a;=1.09-|-.00059= l.09059 nearly

(8) x^—12j;-1-7=0.

It is easily seen that a; is a little greater than 2. and by trial it

is found less than 2.1, therefore let these be the first two assuipwd

1) imbers.

2 X 2.1

-{-16 i" ....
—24 —12a;

+ 7 +7
— 1 results and errors ....

2.2481 : .1 : 1 04

• . a;=2-{-.04=2.04 nearly.

-fI9.448]

—25.2

+ 7-

-1-1.2481
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Bv trial we find 2.04 too small, and 2.05 too great.

2.04 X 2.05

17.3189.

—24.48 .

17.661

—24.6

+ 7

.... x" . .

.... — 12x .

.... 7. . .

— .1611 . . . results and errors ....-[- .061

As .2221 : .01 ; .1611 : .0072

.-. a^=2.04+.0072=2.0472 nearly.

By trial we find that 2.0473 is too small, and 2.0473 too groat;

then by using these as the next two assumed numbers we readily

find the remaining figure of the root.

(9) 2x''—1312+10^;—19=0.

Here it is readily found that x lies between 2 and 3, let these

therefore be tlie two assumed numbers.

32 2a;'' 162

—52 —13x2 _Ij7

+20 +10x +30
—19. —19 — 19

—19 results and errors +56
75 : 1 : : 19 : .3 nearly, and x=2.3 nearly.

JBy trial we find that x is greater than 2.4, and less than 2.5

let these therefore be the two assumed numbers.

2.4 2.5

66.3552 21" 78.125

—74.88 —13x^ —81.25

+24 +10x +25.

—19 —19 —19.

— 3.5248. . . results and errors . . . . 2.875

6.3998 .1 : : 3.5248 : .06.

. . x=2.4+.05=2.45 nearly.

By trial it is found 2.45 is too small, and 2.46 too great, using

(hese as the next two assumed numbers, we obtain the next two

figures of the root.

flO) V7a;'+4a;2+Vl0.<2a;—1)=28.
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By trial we readily find that cc lies between 4 and 5 ; we thero

(uie take these as the first two assumed numbers.

4 X 5

+ 8 V ^x''-\-4x'' 9.91

21.21

—28
+16.73 +v'10J;(2a;— 1) . .

—28 —28
— 3.27 errors + 3.12

6.39 : 1 : : 3.27 : .51.

.•. a;=4-(-.51=4.51 nearly.

By trial we find x greater than 4.51, and less than 4.52 ; there-

fore let these be the next two assumed numbers.

4.51 X 4.52

4- 8.9773 V 7a;'+4x2

+19.0185 +v'10x(2x— 1)

—28 —28 . . ,

— .0042 errors. . .

.064 : .01 : : .0042 : .00066 nearly

.-. a;=4.51+.00066=4.51066 nearly.

8.9965

+19.0633

—28.

+ .0598

Article 437.

NEWTON's method of APPEOXIMATION.

The learner must observe that A is what the proposed equa-

tion becomes when x=a, and that A' is what the first derived

polynomial, or first derived function (Art. 411) becomes when
x=a.

(1) Proposed equation X=a;'—2x—5=0 ;

First Derived function X'=3x'—2.

When 2 is substituted for x the result is — 1, and when 3 ia

8ub.9tituted the result is +16 ; therefore (Art. 403), one real root

of the equation lies between 2 and 3, and is not mucli greater

than 2. By trial we find that 2.1 gives a positive result, there-

fore the root lies between 2.0 and 2.1.

. . let a;=:a+)/=2+?/.

then A=(2)3—2(2)—5, and A'=3(2)=— 2,

A _ 8—4—5
12—2

:=+.l.
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.-. x=a+y=2+ ( —^, j
=2+. 1=2.1.

Next let x=b-\-z=2.1-\-z,

then B=(2.])'—2(2.1)—5, and B'=3(2.1)=—2.

B' 3(2.1)2—2 11.23

.-. a;=i+2;=2.1-f(—.0054)=2.0946.

Next let a;=c+2'=2.0946+a ,

then C = (2.0946)'—2(2.0946)—5=.00O54155O536,

C'=3(2.0946)'—2= 1 1. 16204748,

.
=„C__-000541550536___00004g5j_

C 11.16204748

.-. a:=C+2'=2.0946+(—.00004851)=2.09455149,
which is true to the seventh place of decimals ; and by

proceeding in a similar manner the value of x may be

found to any required degree of accuracy.

Remark.— Tiie great objection to Newton's Method of Approxima-

tion is, that we are obliged after each operation to commence with tho

entire approximate value of x in tlie same manner as at iirst, and no

assistance is derived from the previous calculations except in having

found a nearer value of the root. But in Horner's method we approxi-

mate continuously to the true value of the root by the evolution of single

figures fi.s in Long Division, and the Extraction of the square root in

arithmetic, and each previous figure is of use in finding the next.

Newton's method is now rarely used, and may be classed among th«

scientific curiosities of a past age.

Articles 438— 441 .

CAKDAN'S SOLUTION OF CUBIC EQUATIONS.

Formula;. x^-\-3qx+2r=0.

(2) a;3—9j;-f28=0. Here 5=—3, and r=-|-14.

^=^(—14+V196—27)+=/(—1*—^196—27)

=^(—14+13)+V(—14—13)=V^+V^^^7="1—3=—4.
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Dividing the given equation by a;— (—4)=a:+4, the quo-

tient is x'

—

Ax-\-1 ; hence x^—4x+7=0, and

(3' x^-\-6x—2=0. Here 5=+2, and r=— 1.

= jylZ:3^2=1.58740—1.25992=.32748.

(4) a;'—6a;2+13x—10=0.

To remove the second term (see Art. 407, Cor.,)

A__ —
^=4-2^ n T

.-. x=y-\-2, and the transformed equation is

()/+2)'—6(y+2)2+13(y+2)—10=0 ;

2,3+^=0, or y(j/2+l)=0, ^
virhence y=^ and y^-\-l=0 ; or y=dzj— !•

.-. x=y+2—2 ,4- 2±V^.

(6) a;5+6x2—32=0.

Let x=ij—i=y—i.
(2/_2)3+6(!/-2)^-32=0 ;

or ^3—12y—16=0.

Here 5=—4, and ?•=—8.

j/=2y(+8+J64—64)+^(+8—V64—64)

=V+8+y+8=+2+2=+4.
Dividing the equation y'—12y—16=0 by y—4 the quo-

tient is j/^+4^+4, hence y^-\-4y-\-4:=0,

and ?/=—2, and —2.

.-. a;=y—2=4—2=2, and —2—2=—4, and

—2—2=—4.

(6) a;'+6j;2+27x—26=0.

Let x=y— I;— !/—2, then

(y_2)3_l_6(j/-2)'+27(y_2)-26=0.
or, j/3+1.^?/—64=0.

Hero 9=+5, and j-——32.
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y=»/(32+Vl024+125)+V(3^—V1024+I35)
=?/(32+33.896902513356585455)

+ »/(32—SS.896902513356585465)

= 3/(65.896902513356585455)

—V(l-896902513356585455)

=4.0391346—1.2378889=2.801245+.

.-. a;=y—2=2.801245—2=.801245.

(7) x^~9x^+6x—2=0.

Let a;=y+|=y-|-3, then

(j/+3)'-9Cy+3)=+6(y+2)-2=0
or, y'—2l2/—38=0.

Here y=—7, and r=— 19.

3^5/(19+^361—343)+V(19—j361—343)

=V(19+3v'2)+V(l9—3V"^)
=?/(19+3X 1.4142135623730950488)

+V(19—3X1.4142135623730950488)

=5/(23.242640687119285146)

+ J/C14.757359312880714854)

=2.8538325+2.4528418=5.306674+.

.-. a;=y+3=5.306674+3=8.306674+.

Remakk.— In the solutions to the last two examples, the extraction

of the square root is carried to eighteen places of decimals, but this is

further than is necessary to insure accuracy in extracting the cube root

to seven places. For this purpose ten places, or even less, are quite

sufficient.

After the pupil has faithfully performed all the operations in these

two examples, let him solve the same equations by Horner's method,

(Art. 434,) and he will then appreciate its superiority. To obtain tho

resul'. true to six places of decimals requires about one-fourth as much
labor by Horner's Method as by Cardan's Rule, and the difference in-

«reases rapidly with the increase in the number of places of decimals

Article 442.

BECIPROOAL OB KECUREING E Q U A T I O K » .

(I) a;'—10a:3_^26a;'—10j:+1=0,

jt3.:_i0a; +26——+_=0, bv dividing by ic'

;

X x^
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or, a;2+i— 10 ( x+1 ] =—26 ;

X^ \ X /

Let x-\-~=z, then a;^-|"—=^^—2, and
X x^

22—2—102=—26,

22—102=-24, and 2=6 or 4.

.• a;+_=6 or 4,
a;

whence :t;=3±2;,/2, or 2±^3.

(2) x''+5a;'+2a;2_[-5a;-[-l=o.

5 1
a;2-l-5a;+2-l—+—=0, by dividing by «*,

a; a;2

x-' \ a; /

Let a;-l--=z, then x^-l-—=:22—2, and
X x^

2^-1-52=0, whence 2=0, or —5.

.•. x-\--=Q, or —5,
a;

whence a;=±V— !> o"" K—5±v'21).

(3) k"—|a;3+2a;=>—|a+l=0

x^—^x-\-2—A-j-L=0, by dividing by a'
2x x^

x' V a; /

Let a;+-=2, then x2-|-L=2;=—2, and
a; x^

2^—712=0, whence 2=0, or -|-;}.

.-. a;+i.=0, or +4 ;

X

whence a;=±V—1, or 2, or i..

(4) x"—3a;'+3a;—1=0.
Ft is proved in Art. 4 12, Prop. Ill, that this equation is d'uisihl*

by x^—^l, .'. a;'^—1=0, und a:=drl.
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Dividing tlie given equation by a;'— 1 the quotient is %^—Sa-]-!,

tnerefore x'—3x4-1=0, whence .r=i(3=hV5)-

(5) a;'— l]ar'+17j:'4-17x'— 11x4-1=0.

It follows from Art. 442, Prop. II, that — 1 13 a root of ihia

equation, therefore it is divisible by x+l (Art. 395).

1—114-174-17—114-1 (—1
— l-fl2—294-12—

1

1—124-29—12-1- 1

.-. a;<—12x'4-29x2—12x4-1=0.

x'— 12x 4-29——4-i-=0, by dividing by «»
X x^

«24-l— 12 { x4-l ) =—29.
x' \ X /

Let x^-=-z, then x^4-_=2'—2, and
X x^

z'—122=^27, whence 2=9 or 3.

.-. x-l-2=9 or 3 ;

X

9±777 „^ SzbVl
wnence x= — , or y~

.

(6) 4x«—24x'4-67x''—73x'-f57x'—24x-|-4=0.

4x3—24x24-57x—734-———-|--=0, by dividing by x»,
X x^ x'

4(x34-L)-24(x'-fiJ-F57(x+l)=73.

Let x+l=z, then x24--=2^—2.

X x^

and x'4-—=2'—32.
x'

.-. 4(23-32)—24(2'—2)4-572=73,

23—6224-^2=4-2/.

To solve this equation by Cardan's Rule, Art. 441,

let 2=^4-2, then y^-|y4-]=0,

y=V(-i+N/g\-g',)+V(-i-Vs'4-BV
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Dividing y'—ly+j by y+l,tho quotient is y^—y-\-\ i

therefore, y^—y-\-^=o, and y=-{-!,, and -I-'.

.-. j=!/+2=—1+2=1, or .^+2=:], and j.

. . a;+-=l, whence x=-

or, x-\--=^, whence x=2, or \.
X -

.-. the six roots are 2, ', 2, ' lXj?Zz:?, and
^~'^~^

2 ~ *> o

Article 443.

BIBOMIAL EQUATIONS.

(1) Let x*=l, then x"—]=0, and (a:^—l)(jc2+l)=0

.•. a;'—1=0, whence x-=l, and a!=-f-l, or— 1.

Also, x--\-l=^0, whence x^=:— 1, and x=-\-J—1,

or, —7— 1.

(2) Let x':=l, then x^—1=0, and the equation is divisible by

X— 1, .•. X—1=0, and a:=+l.

Dividing x^—1 by x— 1, and placing the quotient equal to

zero, we have

a;<4-a;'-f-a;2+.i:+l=0,

x^-\-x-\-\-\- --\-—=Q, by dividing by x'',

X x^

^'+-,+^+-=-1-

Let x-{--=z, then x^-\-—=z'—2, and

z^-\-z=l ; whence z=— ^ =a.

'. x-\--=a, whence
X

*=-+i^/a^—4, or -

—

IJa''—4, and since a has two
J * 2 "

values X will have four values.
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„:.^(—1±J"5)''_6—2^'5^ ^^ 6+2V

5

'

4 4 ' 4

= 4^5—1—V(—10—2V6)i ;

=-i!V5+i-V(-io+2v'5)?

;
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APPENDIX,

INDETERMINATB ANALYSIS.

Art. 1. Indeterminate Analysis is the resolution of equa>

ticvns where the number of unknown quantities is greater than

the number of independent equations, and where the results are

required in positive integers.

It is shown (Alg. Part II,. Art. 168,) that whenever the num-

ber of unknown quantities is greater than the number of inde-

pendent equations, an unlimited number of values may be found

for each of the unknown quantities. But such conditions may
exist as to limit the number of results,- or even render the ques-

tion impossible. Thus the equation 3a;-|-5y^4"2, may be satis-

fied by an infinite number of values of x and y ; but if it be re-

quiied that these values shall be integral and jjosiZiw, then we can

only find a;=9 or 4, and y='& or 6.

Problems of this kind are called indeterminate, and the results

are generally required in positive integers.

An indeterminate equation of the ^7'sf degree, cT^taining two

unknown quantities, is of the form

ax-\-by=c,

where a, b, and c are either positive or negative whole numbers.

Art. 2. Proposition I.— If an equation of tlie form ax-\-hy

=c, is in its lowest terms, it can not he solved unless a and i are

prime to each other.

For, if possible, let a=md, and h=nd ; then mdx-\-ndy=:^,

and .'. mx-\-ny='

\

d

but, by hypothesis, a, b, and c contain no common factor, there*

fore - is a fraction, and we have the sum of two whole .lumberi
d

equal to a fraction, which is absurd ; nence the proposition >
true.

Art. 3. Pkofosition II.— If a aid b are prime tc ".ach

other, each term of the series, b, '2b, 3 J, cj-c. . . . (a—l)t, jchen di-

vided by .a, will leave a different positive remainder.
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For, if possible, let any two of tlie terms, as mb and lib, when
Jivided by a, leave the same remainder r, so that

mb , r , nb , r
.—=p-\--, and ^-^q-{--;
a a a a

Subtracting the second equation from the first,

mb nb h,—

—

—=p—g, or -{m—n)=p—q;
a a a

Dut the left liand member of this equality is a fraction, since

- ia a fraction in its lowest terms, and m

—

n less than a, each be-
a

ing less than a, therefore we have a fraction equal to a whole

number, which is absurd ; hence the remainders are all different.

Illustration.— Let a=4, and i=7 ; then 7,7x2, and 7x3,
when divided by 4, leave the different remainders 3, 2, and 1.

Cor. Since the remainders are all different, and are a—1 in

number, each being less than a, therefore they include all num-

bers from 1 to a—:1.

Art. 4. Proposition III.— The tqualion ax—6i/=±,l ts

always possible in integers, if a and b are prime to each other.

By the Corollary to the preceding proposition, if b, or some

multiple of b less than ab, be divided by a, the remainder will be

1 ; let^ be that multiple, then

" =x-\-- ; X being the integral part of the
a a

quotient and 1 the remainder. By clearing and transposing this

gives ax—by=—1, which proves part of the proposition. Again,

by the same corollary, y may be some coefficient of b less than

a, such that yy^b, when divided by a, will leave a remainder a—1,

that is

y^ =x-\- , X being the integral part of
a a

the quotient, and a—1 the remainder ; Dy clearing this gives

by=ax-\-a—1 ; by transposing and factoring

a(a:-|-l)

—

by=\ ; let x-\-l=x', this gives

ax—?>«/=!, which proves the remaining part

ot the proposition. Hence, if a and b are prime to each other,

such values of x and y may always be found as will satisfy the

equation ax—iy=±l.
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Aet. 5. Proposition IV.— If a and h are prime to each

oilier, the equation ax—fry=±c, is always possible, and an indefinite

number of integral values may he assigned to x and y, which will

satisfy the equation.

For ax—i!/'=±l, is always possible (Art. 4).

. . c{ax'—by')=zizc, or acx'—bcy'=^±c, is always possible.

Let cx'=x and cy'^y, then

ax—by=:i±c, is always possible..

Let one solution be x=p and y=q, then

ax—hy=ap—bp, or ax—ap=:hy—hq.

__
a(a:—p)_^

^ a„j
x^p_h_mh

^

Ky—q) ' y—q « ^a'

or, X—p-=mb, and y—q=ma ;

.'. x=p-\-mb, and y=q-\-ma.

and since m may be either positive or negative, and have any

value whatever from to infinity, the number of values of x and

y are indefinite.

Cor. Since p and q are integers, and since m may be either

positive or negative, m may be so assumed, that x shall be less

than b, or that y shall be less than a ; for making m equal to 0,

—1, —2, —3, &c., successively, we shall have

x=p,p—b, p—2h, &c.,

and y=q, q—a, q
—2a, &,c.,

where it is obvious that one of the values of x must be less than

h, and one of the values of y less than a, whatever be the values

of j> and q.

Art. 6. Proposition V. — The equation ax-\-by=c, is al-

ways possible in positive whole numbers, provided a and b are pritae

to each other, and c is greater than ab—a—b.

For, if c^{ab—a—b)-\-r, the equation becomes

ax-\-by=ab—a—b-{-r ;

.-. ^_gi—a—t—ty+)-.^,,_^_ (y+1 )b—r .

a a

Bince b— 1 is an integer, the possibility depends on

VJ

—

i =z, being an integer.
a

Let 3/+l=!/', then we have az—by'=—r, which is alw«y«
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possible, ( Art. 4 ); let then y be less than a, or y-\-\<^a (Prop.

IV, Cor.), then in the equation
^"~^ ' ==z-

a

I mu?, be less than h—1 , therefore

a;=&—1— ^ithlltl!'=i—1—z, must be some in-

a

teger number ; hence the equation ax-\-by=:c is always possible

when a and h are prime to each other, and c^{ah—a—h).

Remark.— The last two propositions are of great practical utility, in-

asmuch as they show the possibility or hnpossibility of eouations of thia

kiud.

Art. y. Problem I.— To find positive integral values of x and

y in the equal io7i

ax—by=c,

or, ax-\-hy^c,

a and b being prime to each other, and c being either plus or minus.

ax—by=c, gives x=JtJ^=:py-\-q-\---01-, where py-\-q rep-
a a

r?sents the integral part of the quotient, and b'y-\-c the remain-

der, b' and c being less than u. Now in order that the value of

J. shall be integral, the remainder b'y-\-c' must be divisible by </,

1 ence
^"^

° must be a whole number.
a

If now we take the difference between -J, which is evidently
a

a whole number, and that multiple of _^Il1 in which p'b'y, the
a

multiple of b'y, is nearest to ay, we shall have a remainder of the

form ^Jth^, in which b" is less than b'. Again, if we take the

a

difference of "Jjl^^ and that multiple of -^ '

^
, in which th«

a a

multiple of b"y is nearest to b'y, wo shall have a. remainder of

the form _jQli_, which must be a whole number. Hence, by
a

continuing this process, we shall finally obtain a remaindei of

the form 01-, or ^-, in which the coefficient of y is 1.
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Now if we divide k by a, and call the quotient g, and the re-

mainder r, we shall have ?'ltL=j-)-J[lL!, or t/
''=

—

q-\-^' '

,

a a a a

which are evidently whole numbers when ^LlT, or ^ '" are
a a

whole numbers. Now let ^2l!!=io, a whole number ; then
a

y=^aw—r, where w may be any whole

number that will render y positive. In a similar maimer, if r is

negative, we find y^aw-\-r.

It is evident that the same general method may be applied to

find the value of y in the equation ax-\-by=c.

Since the subtraction of fractions does not produce any change
.n the common denominator, this may be omitted in the operation,

and we m»ay proceed according to the following

Rule.— Reduce the equation to me form x=by-\-c
; perform the d -

vision of hy-]^c by a, and call the remainder Vy-\-c'.

Take the difference between ay and that multiple of b'y-]-c' in which
the multiple of b'y is the nearest to ay, and call the remainder
V'y+c".

Again, take the difference between h'y-\-c', and that multiple of
b"y-\-c", in which the multiple of h"y is the nearest to b'y. And so

on, till we get a remainder of the form y-\-k, or y
—k. Lastly divide

k by a and call the remainder r ; then y=aw—r, or aw-\-r, accord-

ing as k is plus or minus ; and w may be any whole number that

will Tender y positive.

Having the value of y, the general value of x is obtained by
substituting the value of y in the given equation.

When the given equation is of the form ax-\-by=c, the value
of y is found on the same principles, except that it may be
necessary to add instead of subtracting, to reduce the coefficient

of y.

The preceding rule depends on the principle that the sum or

difference of two whole numbers ix a whole number; and that ami
multiple of a whole number is also a whole number.

EXAMPLES.

1. Given 1x—12j/=15, to find x and y in positive whcle nura
bers.

Here .=ll^=y+2+^y±l, and a=7.
7 7
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ly =o.y

hy-\-\=h'y-\-d , and the multiple =1,

2y—l=J"y+c",

4^

—

1=fh"y-\-fo" , where ;)='<!.

5y+l =yj/+e'.

?/-|-3= diff. of last two quantities,

y+3. =w, and y^^w—3,
7

7

Let ic^l, 2, 3, &c.

Then a:=9, 21, 33, &c.,

»nd !/=4, 11, 18, &c., where it is obvious the numbei of

values of X and ;/ are unlimited.

2. Given 7a;-|-l ly=47, to find x and 7/ in positive whole nam-

bers.

Here 1= i=G

—

y-\- J, and a=7.
7

^^ 7 '

5—4ji:^i'y-j-c',

1 —3y^=pb'y-\-pc'

,

7y=ay,

10—J,

7 ^ 7 '

t=M=w, .: y=Z-lw

;

_47-ll(3-7t.)^ ,,,„
7

Let t«=0, then a;^2, and2/=3, the only values.

3. How can 78 francs be paid with pieces of 5 francs and of

3 francs, and in how many ways ]

Let x^ the number of 5 franc pieces, and ;/= the number of

3 franc pieces.

Then .5x+3y=78,

,_78-3y_,5^8_-3y^
5 5

' ^ 26
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6

—

Qy=pVy-\-pc'

,

by=ay,

^I^ =l-\?—y. ; let i=^=«,, -. y=l~5w ;

5 ^5 5
^

5

Let w^ 0, —1, —2, &c.

Then a;=15, 12, 9, 6, 3, 0.

y= 1, 6, 11,16,21,26. Hence it may be paid in

6 ways.

EXAMPLES FOR PRACTICE.

4. Given 5x-\-'7y=lQ, to find x and y.

Ans. j;=l, y=2, only one solut'r.n.

5. Given '7x-\-lQy=92, to find a; and y.

Ans. a;=5,y=3, only one solution.

6. 5a;+7y=29. a;=3, y=2.

7. 13a;+14y=200. a;=10, y=5.

8. 27a+16!/=1600. a;=48,32, 16.

y=19, 46,73.

9. A ovires B JEIOO, but A has no money but guineas, and B

has only 50 crowns ; how can the debt be paid, a guinea being

~1 shillings, and a crown 5 shillings 1 An^. A gives B lOo

guineas, and receives 20 crowns from B; or A gives B 105 guineas,

and receives 41 crowns from B.

10. Find two fractions, whose denominators shall be 7 and 9,

and their sum equal to -^y.

Let X and y denote the numerators of two fractions, then

-+^^^2, or 9x-|-7y=57, whence ,i-=4, and y='i.

A?is. :! and |,

11. Find two fractions whose denominators are 7 and 9, and

whose sum is l;! J. Ans. fi and |.

12. Of the oriuations 9a;4-17)/=127, and 9,(.-+17i/=128, which
is possible, and which impossible 1

Ans. First impossible. Second jiossib'e, 1=1, //=7.
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AnT. 8. Pkoblem II.— To determine the number of solutiona

of wliicli the equation

ax-\-hy=c,

will admit in positive whole numbers.

Let m denote an undetermined positive whole number, and let

*', y' satisfy the equation

ax'—)>y'=z\
,

then acx'—hcy'=c,

and —abm-{-ahm=iO,

whence, a(cx'—im)-|-i(am

—

cy')=:c;

but ax-{-by=c,

.. x=cx'-—Am, and y^am—cy'.

Now it is evident that the number of solutions will be the same

ail the number of values that can be assigned to ro that will ren-

der bm less than ex' , and am greater than cy',

bm<j:x', gives m<^—
;

b

arri^cy', gives rn^]L_
a

'

Hence the number of values of m will correspond to the differ ^

ence between the integral parts of the fractions

ex' , cy'— , and -i.,

b a

except when "^ is a whole number. In this case, since
b

itkC ^, the number of solutions will be

one less, or, which amounts to the same thing - must be co^
b

sidered a fraction.

EXAMPLES.

1. Given 5a;-|-lly=254, to find the number of values of x

and y in whole positive numbers,

5x--\ly'=l.

x'=V:l±^='iy'-\-y^. .: y':=5w-l.

By substituting we find a;'=lli()—2.
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Let K>.=1, then x'=9, and v'^4.

Cj/'_254X4 _.)(,3, ^_^'=4.
a 5 ''

b a

This result may be verified by actually finding the valdes of

eandy. Thus, ar=9, 20, 31, or 42; and 2/=19, 14, 9, or 4.

2. Given 7a;+9y=2342; to find the number of values of «

and y in positive whole numbers. Ans. 37.

3. Given ]la;-)-17!/^987, to find the number of values of x

and y in positive integers. Atis. 5.

4. Given 9^+13^^2000, to find the number of solutions in

positive integers. Ans. 17.

5. In how many ways can j£100 be paid in crowns and

guineas, the crown being 5s. and the guinea 21s. Ans. 19.

6. In how many ways can £1053 be paid in guineas and

moidores, the guinea being 21s. and the raoidore 27s. !

Ans. Ill ways.

Art. 9. Problem III.— To find the integral values of x,y,

and 2, in the equation ax-[-6i/-f-c2=d.

Let c be the greatest coefficient in this equation, then since the

values of X and y can not be less than 1, the value of z can not

, d—a—b
exceed .

But
jl,—by—cz

a

therefore, by operating on this equation, according to the method

employed in Art. 6, we shall obtain a result of the form

y ^
. ; let this equal w, then

a

y=aw^^z±r, where z may have any value

from 1 to
°

, that will give positive integral
c

jalues to X and y.

EXAMPLES.

1. Given 3a;-l-5i/-f72=50.

„ .
50—3-,5 „

Here z am not exceed =0.
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y—2z-

^Qi)

2—2y—z
3

'iy^ay,

2-2y-z
y=2w-\-z—2

y-z+2
50—5(3«)+K—2)—72 „„ . .^= ^^ g

—

^ =20—ou)—42,
o

If ic=l , a:=15—Iz, let £= 1,2, 3,

y=\-\-z, then x=ll, 7, 3,

y= 2,3,4.

If «;=2, a;=10—40, let 2=1, 2,

y= 4+2, then a:=6, 2,

If 2c^3, a;=:5

—

4j,

2/=5,6.

let 2=1,

then a;=l,

y=8.

Therefore, the whole number of solutions is 6.

When the number of solutions is numerous, the pre cess will

become tedious ; but the object of inquiry in such problems is

generally not to find the solutions themselves, but to determine

the number of which the equation admits, the method of doing

which will be explained in the next problem.

2. Given 2a;-|-3y-|-42=:21, to find all the positive integi-al

values of x, y, and z.

Ans. 2 2=3;_1 .
3^='^. 4, 1 ;

I

„ .
fe=5, 2;-^ )2/=l,3,5. r-^- ^y=l,3.

3. Given 2j;-|-5!/-|-42=27, to find all the positive integral

values of X, y, and 2.

2
3.

2

4. Given 17a;-(-19y-|-2l2=400, to find the integral values of

*, y, and z.

Ans. z= 1, 2, 3, 4, 5, 6, 11, 12, 13, 14,

y=ll, 9, 7, 5, 3, 1, 8, 6, 4, 2,

07=10. 11, 12, 13, 14, 15, 1, 2, 3, 4.

Akt. 10. Problem I"V'".'=—To determine the number of solutiona

of which the equation aa;-(-fr!/+ct=;d

2
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will ailmit, at least two of the coefficients, a, b, c, being prime lo

(jach other.

By Art. 8 the number of solutions of which the equaticn

ax-\-by=c will admit, is expressed by the difference between the

integral parts of — , and X, where x' and y' are to be found
b a

from the equation ax'—by'=\. Now in the equation

ax-\-by-\-cz=^d, if we transpose cz, we have

aic-\-lry=d—cz ; therefore, if we make 2=1,

2, 3, 4, &c., successively, the number of solutions in the equa-

tions

ax-{-by=d—

c

i '—, and -^ ^
b a

ax+hy=d-2c e^'" ^^ ^he differ-^ (d-2c)x'
^ ^^^ {d-OcW

lence of the inte->- b a

17 J Q tsrsX parts of ) (d—3c)a;" , (d—3c)vax-\-by=d—3c, " "^ ^ L , and ^^ '-2.

b a

&c. &c.

Now the sum of these differences will be the whole number ot

solutions of which the equation admits. Therefore, if we take

the sum of the integral parts of the arithmetical series

(d—c)x'{d—2c)x'
^ ^^

. {d—z c)x'
^

b b
' • • ^ >

and also of the arithmetical series

{d^c)y'_^{d—2c)y'_^^ &c _[_
('^—^'g)y

^

a a a

the difference of the two will be the whole number of integral

solutions. Now in each of these series the first and last terms,

and also the number of terms are known ; for the general term

in the first series being ^ ~, and in the second, ^ ^'^^^ the
b a

extreme terms will be found by taking z=l, and z the greatest

whole number in _ ; the last value of z being found by

making x and y, each equal 1 in the given equation. It is also

obvious that the last value of z expresses the number of terms in

the series.

Therefore, if we find the sums of the terms in each series, and

deduct from each the sum of its fractional parts, we shall obtain

the sums of the integral parts of each series.
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In finding the sums of the fractional parts, since the denomina«

tor is the same, it is obvious that the fractions must recur in

periods, and that the greatest number of fractions in each period

can never exceed the denominator, since any divisor, as b, can

leave no other remainder than those from 1 to b—1 ; hence, the

shortest method of finding the sum of all the fractions, will be to

find the sum of the fractions in one period, and multiply this by

the number of periods. If there are not an exact number of

periods, the overplus fractions must be summed by themselves,

observing that they will recur in the same order as in the first

period. Also, in the first series, _ must be considered as a frao*^

b

tion. (See Art. 8.)

EXAMPLES.

1.' Given 3a;-|-.'ij/-|-72=100, to find the number of solutions

of which it admits in positive integers.

Here 3x+.57/=10()—72. If we make z=l, 2, 3, 4. . . 13,

in succession, then the number of solutions, of which the equa-

fijr fit/

tion Sx-\-dj/^d will admit, is expressed by ——-i , where x' and

y' are to be found from the equation Hx—5j/'=1, {x' being =2,
and y'=l). Therefore, in the equation 'ix-\-!iy=H)()—7z, if we
take s=l, 2, 3, to 13, which is the limit to the value of z, the

number of solutions in the equations 'ix-{-5y^9, Sx-\-5y:=lii,

and to 3a;+5v=93, will be expressed by ——-i-, ——— _.?.,
^

5 3 5 3

„ , 93a;' 93»/ ,

&c., to ——^, or by
5 3

'

Wy , 16^ , 93^V _ ^9y' ley 93y'>

ir}"^ 5 "^ 5 S rs "^
3 "^.3

S
•

Or, by substituting the values of x' and y' the number of solu

lions will be expressed by the difference of the arithmetical seriea,

2.93

5 '

""' -3-+~3-+-l-+^ -3--

The sum of the first series is 265|,and of the second 221.

But as it is only the sum of the integral numbers in each that ia

wanted, we must deduct from each the sum of the fractions in ir.

2.9 ,2.16
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The fractions in the first .series occur in the following order*

h f ' 6' t' i ' ^"d as there are five terms in this period there will

be (V='^tI) ^^^ ^"i^h periods, and 3 terms besides. i+§+5
+f+l=¥=3. and 3X2=6, |+f+,^=l^, and 6+1^=71,
the sum ol the fractions in the first series. In the second series

3-(-|-l-|=3^1; y=^^3> hence there are 4 periods of fractions,

and the whole is 1 x4=4.

265i—7^=258^^ ; 221—4=217.

258j—217=41 1, hence the number of solutions

required is 41.

2. Given the equation 2a;-|-3^+52=41 , to find the number of

solutions of which it admits in integers. Ans. 21.

3. Given the equation 5a;-j-7j'-|-llz=224, to find the number
of solutions of which it admits in integers. Ans. 59.

4. It is required to determine the number of integral solutions

of which the equation 17a;-|-2l2/-|-30z=3000 will admit.

Ans. 40o.

5. It is required to determine the number of integral solutions

of which the equation 7x+9!/+232=9999 will admit.

Ans. 34365.

Art. is. In the preceding problem it is required that at least

'.wo of the coefficients shall be prime to each other. When this

is not the case, the proposed equation may be easily transformed

to another possessing the required property, as is shown in the

following example.

Given 12a;+152/+202=601.

Transposing 20», and dividing by 3, we have

4a;+5y=200—Gz+lziHi

;

o

Z
i •_^__2+___ jjgjjgg 2=3^—1 . whence

3 ^3 3

by substitution the proposed equation becomes

12a;+15y+20(3M—1)~601, which, by reduction,

oecomes ix-\-5y-\-'20u=20T

.

Now in this equation x and y have the same values as in the

one proposed, and therefore the number of solutions must be the

same.
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Art. la. Problem V. To find the values of three unlinoiun

quanlilies in two equations.

!f two equations, containing three unknown quantities be giVeii

one of the unknown quantities may be eliminated, and the value

of the other unknown quantities found as in Art. 7.

E X A M PL E S .

1. Given 3a;+.5j/+2z=40) to find all the integral values of

4x+4y-|- z=:33S x, y, and z.

By eliminating 2, we obtain bx-\-?ixj=-'3.Q, then by Art. 7, we
find a;=:l-)-3ti), and y=l—bw, and by substituting these values

in either of the equations, we find z=l-\^Qw.
'

By taking m)=0, we find x^\, y^l, and ;=1.
" " w^l, we find a;=4,y=2, and 2=9, which are the

only values.

2. Given x—2y+:=5) to find the values of x, y, and 2.

2x-\- y—z=lS Ans. x=5,' 6, 7,

?/=3, 6, y,

2^6, 11, IG, &c.

3. Given 2x-{-6y-\-iiz= 51) to find all the integral values of

10a;-(-3^+2r=120i x,y,a.ndz.

Ans. a;=10, y=2, and 2^7.

Art. 13. Problem V. To find the least whole number, which

being divided by given numbers, shall leave given remainders.

Let X represent the required number ; a, b, c, &c., the given di-

visors ; and/, g, h, &.C., the respective remainders. Then, by

subtracting each of the remainders from x, and dividing by a,b,c

&.C., we have —^, i, , &c., where it is required to find
a b c

BUC.1 a vrlue of x, tha", each of these expressions shall be whola

numbers.

x-—f
Let —i=p, then x=ap-\-f; substituting this value of a; in the

a

lecond expression, we have jLiZ-— ", in which it is required to
b

find such a value of p as will render the expression a whole num-

ber. This may be done as in Prob. 1, Art. 7.

Having found a value o( p, substitute it in the expression ap-\-

27
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Now if we divide Ic by a, and call the quotient q, and the re»

mainder r, we shall have yj^=q-\-±Jl- , or i.—=—q-\-i.— ,

a a a a

which ars evidently whole numbers when tllL, or i— are
a a

whole numbers. Now let ill

—

=w, a whole number ; then
a

y=zzaw—r, where w may be any whole

number that will render y positive. In a similar manner, if r ia

negative, we find y=^aw-\-r.

It is evident that the same general method may be applied to

find the value of y in the equation ax-\-by:=c.

Since the subtraction of fractions does not produce any change

.n the common denominator, this may be omitted in the operatioji,

and we m.ay proceed according to the following

Rule.— Reduce the equation to Me form x:=hy-\-c
; perform the d -

vision of hy-\-c by a, and call tlie remainder Vy-\-c'.

Take the difference between ay and that multiple of b'y-\-c' in which

the multiple of b'y is the nearest to ay, and call tlie remainder

V'y-\-c".

Again, take the difference between Vy-\-c', and that muUiple of

b"y-\-c", in which the mulliple of b"y is the nearest to b'y. And so

on, till we get a remainder of the form y-\-k, or y
—k. Lastly divide

k by a and call the remai?ider r ; then y=aw—r, or aw-{-r, accord-

ing as k is plus or minus ; and w may be any whole number that

will render y positive.

Having the value of y, the general value of x is obtained by
substituting the value of y in the given equation.

When the given equation is of the form ax-\-by=c, the value

of y is found on the same principles, except that it may be

necessary to add instead of subtracting, to reduce the coefficient

of !/.

The preceding rule depends on the principle that the sum or

difference of two whole numbers is a whole number; and that ant/

multiple of a whole number is also a whole number.

EXAMPLES.

1. Given Ix—12y=15, to find x and y in positive whcle num
bers.

Here x=L-i^=y+2+^Mi, and a=T

.
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1y =ay
by-\-\=b'y-\-c' , and the multiple =1,

2y

—

\=b"y-\-c",

Ay—2^pb"y-{-pc", where p='2,

5y+i =yy+c'.

2/+3= diff. of last two quantities,

^Ij^=w, and y==tw—3,

7

Let jc=l,2, 3,&c.

Then a;=9, 21, 33, &c.,

»nd y=4, 11, 18, &c., where it is obvious the numbei af

values of x and y are unlimited.

2. Given 7a;-l-lly=47, to find x and y in positive whole num-
bers.

Here x=^:^l}y=.G^+^J=^V, and a=7.

5—4y=i'y+c',
10—Sy=pi'!/+pc',

7y=ay,

10—J,

io-y-i-j-3-y.-^^—'+-^'

7
-^

x=l!=li^?=Z!f)=2+ll..
7

^
Let «)=0, then a;^2, and y^S, the only values.

3. How can 78 francs be paid with pieces of 5 francs and of

3 francs, and in how many ways ]

Let x^ the number of 5 franc pieces, and y=: the number of

3 franc pieces.

Then 5x+3y='78,

78—3!/ ,^ ,
3—3y

5 5

3

—

'ij/^b'y-\-c',
' '^ 2G
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^ Find two numbers whoso sum and product are equal.

4ns. a and —"— , wliere a may be any number whatever.
a—

1

4. Find the number of solutions in the equation 9j;-(-13J

r=2000. Ans. 17.

5. What formula gives numbers which, 'vhen divided by 3, 4,

6, respectively, leaves the remainders 2,3,4]
Ans. x:=(iOp—1.

6. Divide 1591 into two such parts that the one may be divisi

ble by 23, and the other by 34.

Ans. 1081, and 510; or 299, and 1292.

7. Into how many pairs of numbers may 350 be divided, such

that one number, wiien divided by 5, shall leave a remainder 3,

and if 5 be taken from the otlier number it shall be a multiple

of 7 3 Avs. 10, one of Ihem being 23, 327.

8. Required the least number which is divisible by 5 and 7,

but leaves 1 when divided by 6. Ans. 175,

9. Divide 100 into three such parts that the first may be divis-

ible by 13, the second by 15, and the third by 27.

Ap!:. 13,60,27.

10. A man buys oxen and horses for $1000, he gives $19 tor

each ox, and $29 for each horse. How many did he buy

!

Ans. 4-3 oxen, and 5 horses ; or 16 oxen, and 24 horses.

11. Divide the fraction V/ into two others whose denominators

shall be 9 and 11. Ans. f and -j-^j.

Suggestion,— Let x and y represent the numerators of the fractions,

then ?4-l^=^^.^, or 11j-1-9»=U8, whence x=9;)—4, and w=18— lip.
9 11 99

12. Find three fractions, Avhose sum is "f-!, and whose denom-

inalors are 5, 7, and 11. Ans. |, i, y'j.

13. Find the least number which, being divided by 2?, 19, and

15, shall leave respectively the remainders 19, 15, and 11.

Ans. 7691.

14. Divide 200 into two such parts, that if one of them be di.

vided by 6, and the other by 11, the respective remainders may

bo 5 and 4.
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SucoESTiON.— Li_'t X and y denote liic quotients, then the parts will bo

IJx-t-S, and lii/-^4 ; and i;x-|-ll//=191.

Ans. 185 and 15, 119 and 81, or 53 and 147.

15. In what year of the Christian era, was the solar cycle 8,

the lunar cycle 10, and the Roman Indiction lOi A?is. 15t)7.

16. A shepherd has a flock of sheep less than 200; when he

counts them by fours, sixes, or nines, he has 3 over each time
;

when he counts them by sevens or thirteens he has I over, and

when he reckons them by elevens the remainder is 7. How
many sheep has he 1 Ans. 183.

17. A person wishes to purchase 20 animals for 20£. (400

shillings) ; viz. . sheep at 31s., pigs at lis., and rabbits at Is.

each ; in how many ways can he do itt Ans. Three ways ; one

of which is 12 sheep, 2 pigs, and 6 rabbits.

18. A wheel in 36 revolutions passes over 29 yards; and in x

of these revoltitions it describes z yards -\-y feet 4"'' inches
;

required the values of a;, t/, and z. Ans. a;==13, y=l, z=:10.

DIOPHANTINE ANALYSIS.

Art. 14. The object of the Diophantine Analysis is, '.o render

algebraic expressions containing one or more unknown quantities,

exact powers, such as squares or cubes ; or, what amounts to the

same, to find such values of a quantity as shall render a radical

expression depending on it rational.

Ex. Let it be required to find such values of x as shall render

4a;-|-5 a square ; that is, so that J4cX-f5 can be exactly deter-

mined. If we assume 4a;-(-5=m^, we find x=—IT-, where m

may be any number whose square is greater than 5. If m=3
x=l ; if m=4, a;=2|.

Remark.— The Diopliantine is pioperly a branch of Indeterniinats

Analysis ; it derives its name from Diophantus of Alexandria, in Egypt

who lived about A. D. 350. In its full extent it is a comprehensive sub-

ject, and has occupied the attention of some of the greatest mathema

ticians. The following is designed to present merely the elementary

principles of the subject. Those who desire a thorough knowledge of h

are referred to " Euler's Algebra, with Lagrange's additions," " BarlowN

Theory of Numbers," and "Legendre Theorie des Nombres"
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Art. 15 Problem 1.— To find such values of x as will render

rational the expression

^ ax^-\-lix-\-c.

The solution of this prohlem assumes different forms, depending

on the values ol a, b, and c.

Art. 16. Case I.— When a=0, or when tlie expression becomes

Jbx-\-c,

Let ^bx-\-c=p, where p may be any number whatever

then bx-\-c=p^, and x=C !_

EXAMPLES.

1. Five times a certain number, diminished by 4, makes a square,

required the number.

Here i=5, c=—4, and x=^ '

, where p may be any number
5

wliatcvur.

If jci^6, then x=;8; if ^=1, then a:=l; if ^=2 then x:=l.Ci,

and so on.

2. Find such values of x as will render the following expres-

sions square numbers, and verify the result.

5x+3, 5x—3, 10—3a;, 3a:+|.

Art. II 7. Case II.— When c=0, or when llie expression heeorres

Ja.'c^-\-bx.

Let Jax^-\-bx=p.v,

then ax'-\-bx:=p-X', and x= , where p may be pny num-
p^—a

ber whatever.

EXAMPLES.

1 . Find such a value of x as will render 5x--]-8x a square.

Q
Here a=^5, i=:3, and x=

p'—y
If p-S,x=->,U p=-2 x=—S.

2. Divide tnc number a into two parts, such th.it tbelr product

shall be a square.
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Lot x= one part, then a—x=: the other, and their product is

ax—x^ which it is required to make a square.

Let ax—x'^=p''x-, whence x=——^P being any number what-

ever.

If a—\Q let v='i, then a;=2, and a-^x—H.

3. Find such a value of x as shall render Ix'^—15a; a square.

15

7—b2
; if^=:2,x=5.

4. Required a number such, that if its half be added to double

Its square, the result shall be a square.

p being any number.
2j!)'—

4

Aet. 18. Case III.— When a is a square, or wlien the expression

IS of the form J a'^x''-\-bx-\-c.

Let ^ a''x''-\-hx-\-c^ax-\-p,

then a''x''-\-bx-\-c=a''x^-\-'2apx-\-p'^,

whence a:^--TI^ , or -^ £-,
'Zap—b b—2ap'

EXAMPLES.

1. Find such a value of x as will render ^x--\-Zx—7 a square.

Here a=2, i=3, and c=—7, whence x^i—±— Let »=X
3—4p'

then a;=7|.

2. Find a number, such that if it be increased by 2 and 5

Bfiparately, the product of the sums shall be a square.

Le'' x= the number, then it is required to make ixA^'Z){x-{-f>)

t square. If p=i, oc=^.

3. Fina a number, such that twice the number int piised by ],

multiplied by eight times the number diminished by I, shall be a

square.

Let a;= the number, then it is required to make I ^x-\-\){Bx—^2)

a '•quarc. If ^=|, a;=l jj.
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Akt. 19. Case IV.— When c is a square, or when the expression

IS of the form J ax''-}-bx-\-c^.

Let J ax'^-\-bx-\-c^=px-\-c,

then aa;2_|_jj,_j_(.2__^2j,2_j_2pcar-)-c' -

, 2pc—b
whence x= .

a—y'

EXAMPLES.

1. Find such a value of a; as shall render Sx'-}-5x-\-Q a square.

][ p=l,x=z\.

2. Divide the number 16 into two parts, such that the sum of

their squarrs slial) be a square.

Let X and 16

—

x represent the parts, then it is required to

make 2x-—32a;-)-256 a square. If 7)=3, then the ports are

9|,and6|.

Similarly, we may find two numbers whose difference shall be

equal to a given number d, and the sum of whose squares Bhall

be a square.

Akt. -i'J, Case V.— When neither a nor c are squares, hut ohen

b^—iac is a square.

Let r and ?•' be the roots of the equation

a;2_|_*a;4-?=0;
a a

.-. ax'-\-bx-\-c^=a(x—r){x—r ).

Let ij ax--\-bx-[-c=p(x—r'),

then ax^-\-bx-\-c^p'^{x—r')'

;

•- a(x—r)(_x—r')=p''(x—r')^,

a{x—r)=p-(x—r')
;

1 ar—bV
whence a;= £1—

_

a—p^

Now the values of r and r' are

'2a
'

-2a

which will be rational when J' -4ac is a square.
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Lft h'^—4ar=tr-, theri

d—b , , —d—l)r=_— , and r=

by substituti(

za -la

'Za{a—/)-)

E X A M 1' L K S .

1. Find such a value of x as will render the expressiuB

^x^-\-Vix-\-iy a square.

Here 6'—4ac=lG9—144=25, and i=5.

_
30—78+18p= 3»2_8

• ^= ! i-= _i ; let p=2, then a;=l.
72—12;)^ 12—2^2

lr;5=2J,x=7i.

2. Find such a value ofa; as will render 2,r^-|-10x-|-12 a square.

3t|2 4
Ans. x=.i ; ify=4,a;=6; if p=|, a;=

2—p2 -j> "— -? .

3. Find such a value of x as will render Sa;'—Si-j—5 a square.

Aks. x= i_
; if p^l , x=:2

3-jo2 '

Art. 21. Case VI. When the proposed expression can be

separated into two parts, one of which is a square, and the other t\t

product of two factors.

If none of the precedin<^ methods be applicable, still the solu-

tion can be effected, if the proposed expression is equal to a square

increased or diminished by the product of two factors. The dif-

ficulty, however, consists in decomposing the e.xpression, which

can only be done by trial.

If ax^-\-hx-\-c={dx-\-ey-\-ifx+9){hx+k), let the latter

= ^dx-{-e-\-p{fx-\-g)l^. Squaring this, omitting

equal quantities on each side, and reducing

^_ p('2e+pff)—k

h-p(2d+pf)-

EXAMPLES.

1. What value of x will render 5x^—1 a square?

Bv trial we find 5x=—1=(2x)=+(j:—l)(x+l).
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Comparing this witli the formula, we have i=2,e=0,/=l

0=—1, A=l, and /i=l ; whence x= ^-T"— Ifp=],a:=<

if p=]^,x=\.

2. What vahie of x will render 2x^-\-Sx-\-1l a square's

Here 2x-'+8x+'7=ix+2y-\-(x+l){x+:i).

] f p=3 , X=i'i ,

Art. 22. When all the preceding methods fail, we mar often

find, by trial, such a value r of x, as shall render ax^-\-bx-{-c a

square. Having' done this, substitute y-\-r for x, and the resulting

equation will be a(i/-\-ry-\-l)(y-\-r)-\-c=ay'^-\-2ary-\-bi/-\-ar^-\-l-

-\-c ; but by hypothesis ar^-\-br-\-c is a square ; calling this n^, the

expression becomes ay''-\-2ary-\-n^, which can now be rendered a

square by Case IV, Art. 19.

EXAMPLES.

1. Find such values of x as will render 6x^—10x^3 a square.

By trial, we find x=2 renders the expression a square. Let

x=y-\-2; then by substitution, and reduction, the expression

becomes &y''-\-\^y-\-\. Let this =(^^+1)2, then y='^^~^^,
6

—

f'^

and since x=y-\-2, we have x^^£ l£_Xr, from which, by giv-
p-—

6

ing various values to j,, we may find as many values of x as we
please.

2. Find a general expression for the value of x that will render

10-j-8x—2x2 ^ square, which is a square when x=L
Ans. x= ""' 4-1.

Problem IL Tofnd such values of x as will render the expression

11X^-4'''''^"+^''^+'' '^ s^i.w.7-e.

There are but two cases in which this problem admits of a

direct solution : 1st, when the last two terms are wanting; or 2d,

when the last term is a square.

Art. 23. Case I. When the expression is of the form bx^-\-hx'

Let xx^-\-bx-=(pxy^p-x'',

then x=P^
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EXAMPLES.

1 . Kind X such tliat 2x^-\-Qx^ shall be a square,

2. Find a number, such that 5 times its cube, increased by 10

times its square, shall be a square. Ans. z=3.

3 Find a number, such that 3 times its cube, diminished by 10
times its square, shall be a square. Ans. x=5.

Art. 24. Case II. When the expression is of the form

ax^-{-bx^-\-cx-\-d^.

Let ax'+lx^+cx-\-d^= ( ~x+d
]
^=^'>+cx-{-d^

;

whence x^
Aad^

1. Find such a value of a: as shall render a;'

—

x'-\-2x-\-l a

siiuare. Here —=1. Ans. a:=2.
'

2d

2. What value of x will render 3a;'—5x'-j-6a;-l-6 a square?

Ans. a;=y|.

3. What value of x will render 2a;'

—

5x^-\-l2x-\-4: a square!

Ans. x=7.

Art. 25. If we know one value r of x, that will render

*x'-{-bx'-\-cx-\-d a square, we may find others as follows

:

Let ar'-\-br^-\-cr-^d=m'', and transform the equation ax^-\-bx''

-\-cx-\-d=0 into another whose roots shall be x—r, (Algebra, Art.

400) ; the transformed equation will be of the form

ay^-{-b'y^-\-c'y-\-m^=0 .

We may then, by Art. 24, find a value q o( y which will render

this e.xpression a square, then the general value of x will be

x=q-\-r.

Ex, Find such a value of x, other than 2, as will render

r'.—a;^-|-2a;-|-l a square.

By suhstit'tiae y+2 for x, the resulting equation is

2/'+52/=+10y+9.

By assuming this equal to (Ij'+S)^ and reducing, we find
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pKOELEB III. To find audi values of x as shall render

ax^-]-hx'-\-cx^-{-dx-\-e a square.

Aet. 26. Cabe I. When the first term only is a square, thai

is, to make a^x' -'rbx'-\-cx'-'-\-dx-{-e a square.

Let a^x'' + lix^ -\- cx^ -{-dx-\- e=(ax -{- nix-\-ny=a^.x''-\-2amx^-^

{m'-{-2an)x^-\-2mnx-\-n^.

In order tliat the first three terms on each side shall be lh»

same, we must make

m=—
h=2a7n } , I 2a

, I
.-, V whence \ > a > t>c=m-'-{-2an)

\
c

—

m-' 4a-'c

—

b-'
_

[
" 2a~ Ua^ '

U is gives dx-\-e=2nmx-\-n'', and x^
d—2mn

EXAMPr, ES.

1. What value of x will render x*—3x-J-2 a square!

Ans. 3:='l.

2. Required a value of x, such that the expression 4a;''4-4x'

-\-4x^-\-2x—G may be a square. Aits, x^l'i^.

Art. fi7. Case II. When the last term only is a square, that ts,

to make ax'^-{-bx^-\-cx''-\-dx-\-e^ a square.

Let x=-, then the expression becomes
y

y'

The numerator of this expression may be rendered a square by

the preceding article, and the denominator is already a square,

therefore the whole will be a square.

EXAMPLES.

J . What value of x will render Si''—3,r^+l a square 1

Here it is required to malie
J)''
—Sjz+'-i a square. y=l .'. x^^^-

When the first iiid last terms are both squares, the problem

may be solved by either of the preceding cases.

1. Wliat value of x will render x''—6x^-|-'lx'—24x+lG a

square] Aiis. a;=j.



DIOPII ANTING ANAI, YSIf5. li'-i.l

Art. 29. Wr might now proceed to consider licw an expres
aion of the lorm ax''-\-bx''-\-cx'^-]-dx-\-e can be rendered a square

The geno-ai principle is, to assume the given expression equal

lo such a '.uantity, that, after squaring, all the terms may disap-

pear, or be made to do so, except those containing two consecu-
tive powers of a; ; as the value of this quantity can then be
obtained in a rational form. The terms to bo destroyed may be

at the beginning of the given expression, or at its end, or both,

according to its nature.

Ex. 1. What value of x will render 4.x'<-\-12x^—2x^—2x-{-l a

square.

Assume this equal to (2x^-\-px-\-qy, then squaring and reduc-

ing, we have 12a;'

—

'ix^—'2x-\-l=z4px^-\-(j)''-\-iq)x''-\-'2pqx-\-q'K

Equating the coefficients 12 and 4p, and also—3 a.ndp'^-\-4q,\ve

get p^S, and ^=—3; this reduces the equation to —2x-[-l

=2pqx-\-q-^—18a;4-9; whence a:=o.

When we know one value of the unknown quantity that satis-

fies the conditions other values mnv be found as in Art. 26.

Ex. What other value of x, besides l,will render 3x'—2 a

square 1

By substituting y+1 fti" ^> '^^ get 3^''+12ji'+18)/^+12)/-l-l.

Since the last term is a square, assume this equal to

(py^-\-qy-\-iy, then the last three terms in each member will

disappear by taking^=:—9, and 9=6; whence y=i'i, and there-

fore a:=f|.

By assuming a;=j/-|-j|, and performing a similar process, we
can find another vai'ue of x, and so on.

Art. 29. Quantities of the form ax'-\-hx''-\-cx-\-d, can be ren-

dered cubes on principles exactly similar to those that have been

employed in rendering quantities squares. Thus, if a be a cube,

we may destroy ti.c first and second terms ; if (i be a cube, the

third and fourth terms can be destroyed : if a and d be both cubes,

we can destroy the first and last terms. When neither a nor d is

a cube, if we can tind a value r of x, which being substituted for

*, will render the expression a cube, we may substitute i/-\-r for

X, and then obtain an expression which can be rendered a cube

by the principles just explained. As an example let it be required

to find a value oT x which will make 2x^-{-d a cube. '

Here we see that x^—1 satisfies the conditions; to find

another value substitute y—1 for x, and the expression becomes

2y3—Qy^-\-Gy-\-l . Assume this equal to (;)^/+l)^ and then by
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taking p=2, to make the last two terms of each member disap

pear, we get y=—3, therefore x=—i. By substituting y—

4

for X, we might obtain another value, and so on.

EXAMPLES.

1. Find a value of x that will render 2ix^-\-2x-\-\ a cube.

Ans. x=i,^.

2. Find a value of x, besides x=\, that will render 2x'

—

\x

-j-6x+4 a cube. Ans. x=\7^.

3. Find a value of x, besides x=—1, that will render x--\-x-\-X

a cube. Ans. x=—19.

DOUBLE AND TRIPLE EQUALITIES.

Aet. so. Double, triple, or higher equaliiie':, are problems in

which two, three, or more functions of a quantity are to be made
squares or cubes, for the same value of x. Thus, if it be required

to find a value of x that shall render both the expressions, ax-\-b,

and cx-{-d squares, the problem presents a double equality.

In the following solutions, for the sake of brevity, the symbol

n is used to represent a square number.

Pkinciple — It is sometimes convenient to use the following

principle :

If a square he multiplied by a square, the product will be a square ,

or if a square be divided by a square, the quotient will he a squaie.

Art. 31. Case I.— To solve the double equality

ax-\-b=

,

cx-^d=D

.

Let ax-\-b==p-, and cx-\-d=q-, then equating the two values ol

X, and reducing, we find

c'^p^=caq'^—cad-\-c-h.

Since the left member is a
, 9 must have such a value as to

render the right member a n > which may be ascertained by som"

of the preceding methods.

E.\. What vaUie of a; will render x~\ and 2x—1 both squares'

.1) j
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i\r.T 32. Case il.— To solve the douhk equalItu.

Let as=- then we have

Hojice, by the principle, Art. 30, it is only necessiiry to render

a-\-hij, and c-\-di/ both squares, which belongs to the preceding

problem.

Art. 33. Case III.— To solve the double equality

ax--\-bx-\-e=: D >

dx^-\-ex-irf=a.

Here we must solve the equality ax''-\-hx-\-c=:0, by methods

already e.xplained, and then substitute the value of x so found in

the equality dx--\-ex-\'f= O , which will rise to the fourth degree,

and which must then be solved by methods explained in Art. 28.

Art. 34. Case IV.— To solve the triple equality

ax-{-hy= n

)

cx-\-dy= D

)

ex-\-fy=U.

Put ax-\-hy=i^, cx-{-dy=u^, and ex-\-fy^=s''.

By eliminating y from the first two equations, and x from the
/7/2 lyii, fiu^ ct^

Bamt equations, we find x= , and y= ; substituting
ad—be ad—be

these for x and y in the third equation ;
putting u=tz. and dividing

the expression by f^, we have

{_af—hcy^-{cf—de)_^
ad—be

When it is possible the value of z may be found by Problenj

1, Articles 15 to 22.

Having the value of i', we may assume t of any convenient

value, this will give the value of u; then b}' substitution, the

values of X and y are easily obtained.

The preceding are the most general methods hitherto discovered.

Tn tlie resolution of most problems, however, much will depend
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cn the judgment a/id skill of the operator, and the most irap'^r-

tant and ditiicult problems are solved by methods for which no

Bpecial rules can be given.

MISCELLANEOUS EXERCISES.

i. To divide a given square number, a^, into two squares.

Let x'^= one part, then a'

—

x'=^ the other. Assume a'— «'

:=(a

—

vx)^, whence a;=
v^-\-l

.•. the parts are _i 1_, and
,

Suppose a^=100, then if v=2, the parts are 36 and 64 , '.f

. , , 22500 , 6400 ,
V)==4, the parts are , and , and so on.^

289 289

By means of this formula we can divide a given square into

any assigned number of squares, by first dividing it into two

squares, and then subdividing one or both of these into others.

The solution of this problem gives the following equation

;

Dividing both members by a'\ and multiplying by {v'^-\-iy we

have {v--\-iy=iv'—iy+'i:v'-

;

Substituting c for v, and multiplying both members by q', we
9

get (p2_j_(^2)5=(jo2_y2)=4-4;)=9^.

Hence, the square of p'-\-(j^ being equal to the sum of the

squareti of jo^

—

q- and 2^^, it follows (Legendre IV, 11,) that if

p^-\-q^ be the hypothenuse of a right-angled plane triangle, y^—ij^

and :ipq will be its legs ; this gives the following useful

Rule.— Tofind the sides of a right-angled triangle in lohole numbers,

tale two unequal whole munbers ; then the sum of their squares, the

di_fference of their squares, and twice their product, wilt be tlie three

sides.

Thus, by taking 1 and 2, we find the sides to be 5, 3, and 4 ; if

we tuive 1 and 3 the sides will be 10, 8, and 6.

'2. To divide a number which is the sum of two known squares

B^ and i', into two other squares.

Let .r' be one of the parts, then a--\-b-—a'':=G. But one

\'alue of X is i or a ; therefore, substitute y-\-b (Art. 22,) for x.



OIOPHANTINE ANALYSIS. 329

and we get a-

—

if—2?))/=n ; assume this equal to (a— ui/;^, and

we find y=?.^Illt, ,. ..-,,+;,-K''—1
)+^'»'

Example. Let the given number be 185=4=-|-] ;'.-. Here
a—4, and 6=13; let d=2, then x=\\, and a^—i-jj^ anj

185—121=84=8=. If y=4 the parts are (-7^)^ and (l:^)^.

3. To find three square numbers in arithmetical progression.

Assume {x—yf, x--\-'f, and {x^yY for the three numbers,

Wiiose common difference is 2xy, and of which the first and third

are already squares. It only remains then to make x'^-\-y'^ a

square, which may be done in the manner explained in the latter

pan of the solution to Ex. 1. Thus, let the two unequal numbers

be 2 and 1, then x, (the diff. of their squares,) =3, and y, (twice

their product,) =4. Hence (a;—y)^, a;''-|-2/'i and (jc-|-y)= are 1,

2.J, and 49.

4. To find any assigned number {n) of squares whose sum

shall be a square.

By assuming as the required squares a?, h^, c' . . . and x^

where a-, b^, &c., are numbers assumed at pleasure, it only

remains to find such a value of x as shall make a-+/<'+c-. .

-]-x^ a square, which may be done by assuming it equal to (x-\-py,

and resolving the equation so found for x.

5. Find two whole numbers, such that their difference shall be

a square, and the sum of their squares a cube.

Assume ix^ and Zx^ for the numbers ; then 4x^—2x-=x^^n,
and it remains to make ('lx-y-{-(,Sx-y'=2ox'' a cube.

Let 25a7''=aV, then x=:.\aK Let a=5, then x=5, and the

numbers are 100 and 75.

6. To find three numbers in arithmetical progression, such that

the sum of every two of them may be a square.

Let x—y, X, and K-f j represent the numbers, then 2a;, 2x—
!/,

ind 2x-\-y must be squares.

Assume 2x=r^-)-s', and y=2,rs, then the second and third will

be squares, and it only remains to make r''-\-s'^ a square, which

will be accomplished by making r=7n^—n^, and s=2mn. This

gives 2x={m^+n'y, and the three numbiirs are l(m^-\-n-y

—imT.(m^—n^), iim'+n^y, and i(m2+7i')=-|-4'""(™'—»')• If

m=9 and n=l, the numbers are 482, 3362, and 6242.

28
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This question may also be readily solved by assuming the

three numbers 2x'

—

y, 2a;^, and ^x''-\-y, and then putting y=4x—

1

7. To divide universally any given whole number, N, into as

many different square numbers as it contains units.

Let ax—1, hx—1, ex—1, &o., continued to N terms, represent

a series of roots, the sum of whose squares is to be N. Let each

of these be squared separately, and put the sum of all the coeffi-

cients of x', that is, a^+^^+2^-]-, &c., =m, and those of x, that

is, twice the sura of a, h, c, &c., =n, we shall then have mx''—nx

-1-N=N; from which x=— To apply this to a particular ques-
m

tion let it be required to divide the number 4 into 4 square

numbers.

Let a, h, c, and d=2, 3, 4, and 5, then m=a'~\-h'-\-c'-\-d-

=4-f9+16+2r3=54; n=2a-\-2b+'2c+2d=i+Q+8+l0=28

.-. ^=38=1 4 and ax—1, bx—l,cx—l, and dx—l=-}^, -IJ, 3|,

and |2, and the numbers are (oV)^ (2l)^ (M)'. and (|?)^ or

1 2Jd 84 J „-,j 1 84_9
VHV Tin' 72a> ''"" 7J9

8. Find three cube numbers, whose sum shall be a cube.

Put x^, y^, and z' for the three cubes, and let their sum

.-. 2/'=3x22+3x2;2.

Put x:=pz, then y^=2p^z^-\-'ipz^=:z^(Sp^-\Sp).

It is now required to make 3p^+3? ^ cube, which it is when

p=l ; consequently if we make 2^8. p::=l, and y=6 ;
.-. the

three cubes are 1^ 6', nnd 8', whose sum is 9'. By making t=
any multiple of 8, we may obtain as many integral solutions aa

we please.

The learner should observe that it is generally important to

assume the numbers so as to satisfy as many of the conditions as

possible.

0. Find two numbers, such that their sum and difference shall

be squares A/ts. v^-^1, and 2v, or and 4, &.c.

10. Find two numbers, such that if each be added to the square

of the other, the sum shall be a square. Aiis. ' \ and
8«+l

, whicli are found by assuming 4x and x—1 for the numbers
D+1



DIOPHANTINE ANALYSIS. 33]

11. Fiiiil two numbers, such that the difference of Uieh- cuhca

may be a square number. Ans. "i and ^"'T"'"

12. Find a number, such that the sum of its square and cube
may be a square. Ans. v'^—l, or 3, 8, &c.

13. Find two numbers, such that if to each of tliem, and to their

sum and diflerence 1 be added, each of the four sums may be a

square. Ans. 168, and 120.

Let x^-\-ix and x''—2a; represent the numbers.

14. Render 2x2—2 a square. Ans. ,r='" "^
'

»j2—2'

First assume x=y-\-l.

15. Find two numbers, such that the difference of their squares

may be a cube, and the difference of tlieir cubes a square.

Ans. lOi)*, and 6i>*

Assume tlie numbers equal to x^-\-2a^, and a;'—2a^.

16. Find a number, such that if 1 be added to its double and

triple, each of the results may be a square.

Let 2x--\-'2x represent the number, then x=—J^
_

v'^—6'

Ans. 40, 3960, &c.

17. Required three numbers, such that the sum of all three, and

the sum of every two of them may be a square number.

Assume 4.t;, x^—4a;, and 2a:-|-l for the three numbers.

Ans. -3(v=-l), a's(«^-l)=-§(«=-l), and J(«=+2).

18. Find two numbers, such that their difference may be equal

lo the difference of their squares, and that the sum of their

, 2i>—2 , v''—2v
Equares may be a square. Ans. , and

•u'—

2

i;2—2

19. Find two square numbers, whose sum shall be equal to tlieii

product. Ans. ^J^jtll', and (^+1)'^ q^ 35, and f
5 &c.

iv'—1)^ 41)2
" ii"

20. To divide a number vi^hich is the sum of three square num-

bers in arithmetical progression, into three other squares which

shall also be in arithmetical progression.

A-ns. The numbers will be found by dividing one-third cf the

given number into two squares, a- and i^, by Example 1, and

taking (a—by, a''-\-V, and {a-\-hy a.s the required numbers.



iiU2 APPENDIX.

21. To find three whole nuiiibers in arithiiielical progression

who.se common difference shall be a cube, the sum of any two

diniiniohed by the third a square, and the sum of the root.s of the

required squares a square.

Ans. 26980713761144832,
51885988002201600,
76791262243258368.

PROPERTIES OF NUMP, ERS.

Art. 35. Definitions. Even numbers are those which are

divisible by 2.

Odd numbers are those which, when divided by 2, leave a

remainder 1.

An even number is represented by the formula 2n, and an odd

number by the formula 2n-{-l.

A prime number'has no divisor except itself and unity.

Numbers are prime to each other when they have no common
divisor, except unity.

M
Art. 36. If — be a fraction, and if d be the greatest com-

mon divisor of M and N, so that M.=ad, and N=M, then

= ^; and ^ is the fraction _ in its lowest terms, and a is

N /' i N
prime to b.

Tliere can be no other fraction " when p is prime to q,

1

which shall be equal to . ^ ; for if so, M and N would have two
N

greatest common measures, which is absurd.

Art. 37. I. Every nwnher N may he expressed by ike formula

N=}ra-|-J-.

For if the number N be divided by q, and if n he the quotient

ind r the renuiinder, then by the principles of division,

N =qn-\-r ;

q is called the mndiilu!:, and by giving different values to q, differ-

ent forms of numbers may be obtained. It is evident that r can

not e.\ceed q—1.
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Art. 38. II. Every number i> of one of the forms, tin, O"

3n±l.

0-jniparing this with the general formula N=qn-\-r, we have

q=S, r=0, 1, or 2.

.-. N=3m, or 3n+l, or 371+2;

but 3n+2=3ra+3—l=3(re+l)—l=3n—1.

.•. every number is one of the forms 2n, or 3n±l.

Art. 39. III. Every square number is of OTie of the forms An,

or 47i-l-l.

Every number is either 2n, or 2ra-j-l.

If N=27i ; N2=4re'=4n', if n''=?i'.

If N='ira+1; N==4K=+4™+l=47i(n+l)+l=4re'4-l, if

/t(re+l)=ra'.

Hence, N^ is of the form 4?!, or 'H-|-l ; that is, every_ square

number is either divisible by 4, or, when divided by 4, leaves

anity for its remainder.

Art. 40. IV. The difference between the squares of any two odd

lumbers is divisible by 8.

Let M and N be the numbers, M being ]>N.

Also, let M=2m+1, and N=2ra-| I,

.-. M'—N2=4(m2—re=)+4(m—ra)

=4(m+ra)(m—ra)-|-4(m—re)=4(m

—

n)(m-{-n-{-l'),

<vhioh is evidently divisible by 4 ; and nincfi whatever values be

given to m and n, either m—ra or m-[-n-\-l is an even number

;

... M^—N= is divisible by 4x2 ov 8.

Akt. 41. V. The product of three successive mimhers is divisi-

hie by 2X3, or
n(,n+l){n+2)

.^ ^^ .^^^^^_
^ 2x3

I'or one of the first two factors must be an even n^robw, and

one of the three must be of the form 3m, or is divi-sible by 3;

.-. since 2 and 3 are prime factors, ?j(ra4-l)(7i+2) must be divisi-

ble by 2 and 3.

Similarly, it may be proved that the product of four s«r-p««si\fa

numbers is divisible by 2x3X4; that the product of five su.-^^-

cessive numbers is divisible bv 2x3X4x5, and so on.
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Art. 49. VI. The difference between a number and its cube n

divisible by 6.

For n^—n=n{n''—l)=(n

—

\)n{n-\-\), which, being the product

of 3 successive iiumhers, is divisible by 2x3, or 6.

n

6

Art. 43. VII. If n he a whole number, nin?—!)(?!'—4) ii

divisible by 120.

For n{n'^—l){n''—^)=n(,n—\){n-\-\){n—2){n^2')

which, being the product of 5 consecutive numbers, is divisible by

2X3X4X5, or 120, (Art. 41).

Art. 44. VIII. Every square number is eitlier 5n, or 5n±l
Every number is of one of the forms 5n,5n-{-l, 5n-\-2, 5n-\-'d,

5ra-|-4; all of which are included in the forms 5n, 5n-+-l. 5n-h'2,

since 5ra+ 3=5(7i+l)—2==.5?i'—2, and 5n+4=5(?i+l)—

1

=5ra'—1

.

But (5n)-=5(5™^)=5ra', which is of the form 5re
;

(5n±l)'=25?i=±10ra+l=5(5re=±27z)+], which is of

the form 57i-|-l

;

(5?i±2)2=25?i2±20ra+4=5(57i2±4n-l-l)—1, which ia

of the form 5n—^1.

.•. every square is of one of the forms 5n, or 5ra±l.

Art. 45. IX. Every cube number is either In, or 7n±J .

For every number is of one of the forms In, 7re-|-l '''^-[-2,

7n+S, 7re+4, 7re+5, 7n+6. But 7ra+4=7n4-7—3, Tr.-j-5

^='7n-\-7—2, 7n-j-6^7n-|-7—1, hence every number is e-'*er

7w, 7w±l, 77i±2, or 7re±3;

.-. m is C!n)', (7n±l)», {7n±2y, or (7.re±3)', of wlu?\

the first two are of the required forms.

But (7nd=2)'=(7?i)5±6(7n)H-12(7n)±8=7m±8

=7(mH-l)+lr=7n'+l;

(7?j±3)'=(7ra)'±9(7re)'+27^7«)±27=7m±27

=7(m±4)—l=7?f'—1;
.', every cube number is either In, or 7re±l.

Art. 46. X. Every prime number greater thin 3 is of th,

form 6re±l.

For every number is of one of the forms Qn, Cm-\-\ , Cyn-\-'2
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5B+3,6ra-f-4, 6«+5, of which the first, third, fourth, and fifth

are divisible by 2 ; if therefore the number be a prime number it

must be one of the forms (in-\-l, or Gtz+S; but 0a+5=G?i+6
—1^6»'— 1 ;

.•. every pi-ime number greater than 3, is 6?i±l

Cor. Hence, if any prime number is increased and diminished

by unity, either the sum or the difference is divisible by 6. Thus,

29+1=30; 37—1=36.

Art. 4^. XI. If m be a prime number, greater than 3, m'—

1

w divisible by 24.

Let m=6w±l; .-. m^='6'5n'^±\2n-\-\;

.'. m2—l=12?i(3»±l),

and since either n or Zn±\ must be an even number, and there-

fore divisible by 2, therefore 12ra(37i±l) is divisible by 12x2 or

24; .-. m'—1 is divisible by 24.

Art. 4§. XII. Every number is a prime which is not divisibk

hy a number less than its square root.

For every number N which is not a prime is composed of two

factors, as a and b, so that N=ab.

Now if a=h, N is a square number, and a=JN ; but if a do

not =b, and a^i, then a^JN and i<[VN, that is, b a divisor

of N is less than <[^N ; and this is obviously true for every

number not a prime ; . . if a number is not divisible by a number
less than its square root, it must be a prime.

Ex. 97 is a prime number, since it is not divisible by any num-

ber less than .^97 or 10.

The following formulas contain a great number of primes bv

making x^O, 1, 2, 3, &o.

The first 40 terms of x^-\-x-\-4:l are primes,

the first 29 terms of 2a;'-)-29 are primes, and

the first 31 terras of 2^-)-l are primes.

Art. 49. XIII. If fi be any number having prime factors, a,

ft, c, <^c., and a is taken as a factor m times, h as a factor n times,

and c as a factor r times, then N=a"' . b" . c''.

For N=c[ taken m time X^ taken n times Xc taken r tiraea,

=a'"X''"Xc'-

Ex. Let N=360=3X2X2X3X3X5=2'X3=X5'.
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Art. 50. XIV. To find the number of divisors of a giver.

number.

Let N, the given number, =a'" . h" . cT, &c.

Then it is evident that N will be divisible by

1 , a , a' , a' , &c a™;

\ ,b ,V ,V , &IQ, J";

1 , c , c' , c^ , &c c'

;

and also by every possible combination of the products of these

terms ; that is, by every term of the product

(1 +a+a=, &c., +a'")(l+A+6^ &c., +6")(l+c+c', &.C., +c') &c.

But the number of terms of this product, since no two of them

can be the same, is

(m-l-l)(re-j-])(?--j-l), iSiC, which is the number

of divisors of N.

Observe that unity and N are included in the number ol

divisors.

Ex. Find how many numbers are there by which 360 is divisible.

360=2'x3'X-'>'; .-. m=3, n=2, and r=l;

.-. number of divisors =4x3x2=24.

Akt. 5S. XV. To find, a number N Qial shall have a given num-

ber of divisors.

Let d represent the given number of divisors, and resolve it

into factors, as d=lyiuy.v. Take m=t—1, n^u— 1, r=v—

1

&c., and let a, b, c be any prime numbers whatever, then

N=a'" . b" . cT, &LQ,., as is evident from the preceding proposition

Ex. Find a number that shall have thirty d'visors.

First, 30=2x3x5; .-. m=2—1=1, 7i=3—2=1

r=5—1=4; •. N=:a6V is the requireu number

If a=2, J=3,c=5; then 2x32x5''=11250.

If a=.5,6=3,c=2; then 5x3 = X2''=720.

If a=5,i=2,c=3; then 5x2 = x3-'=1620.

If a=3,i=5, c=2; then 3x5 =X2^=1200.

Each of these numbers has thirty divisors, and in the same
manner various other numbers might be found having the same
property, by giving iz, i, and c other prime values.
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Art. 52. XVI. To find the sum of the divisors of

N=a"' . b" . c^

Since every divisor of N is contained in the product, (Art. 50),

vl+a+o', &c., +a")(l-|-i-)-J2, &c., +i")(l+c+c', &c., +c"),

and since by the rule for summing a geometrical series, (Alg.

Art. 297),

1+a+a^ +a'»=?_l_^,
a—

1

IJfh+ h^ -ft"=!i_ i, &C.

. . the sum must be ( ^- ) I H^ ) | ?

—

'^^
] .

Ex. 1. Find the sum of all the divisors of 360.

360=23x32x5; therefore,

Ex. 2. Find the sum of the divisors of 28, the number itself

being excluded.

Here 28=2x2x7=22x1'; .'. the sum of the divisors is

ihe number 28 itself, the required sum is

56—28=28.

A perfect number is one which is equal to the sum of all its

divisors (not including itself). Thus 28, which is equal to

l-f-2-j-4+7-f14, the sum of its divisors, is a perfect number.

Otlier perfect numbers are 6, 496, and 8128; there are onlv

eight perfect numbers known.

EXERCISES.

1. Prove that n^ divided by 4 can not leave 2 for a remainder, n

being any whole number.

2. Prove that no number can be a square which has any f na

of the numbers 2, 3, 7, 8 for its last digit.

3 Prove the following properties of a square number .

29
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(1). A square number can not terminate with an odd numbef

of cyphprs.

(2). II a square number terminates with 5, it must termina e

wiUi 25.

(3). No ''quare number can terminate with two figures the

same, exceot they be two ciphers, or two 4's.

3. If each of the quantities a, b, n, be a whole number, show

that jSfl-f- n—l)i|- is always a whole number.

4. Show thai, x^—5x^-^ix is divisible oy 120, when x is any

positive wbole number.

Suggestion, x^—!ix^-\-4x=x^(x^—4)

—

x(x^—1).

5. Prove that if any square number be divided by 12, the

remainder is a square number, that is, that it is 1, 4, or 9.

6. Find the number of divisors of 1000. Ajis. 16.

7. Find the number of divisors of 2160, and also their sum.

Ans. 40, and 7440.

8. Prove that the product of two difTcrcnt prime numbers can

not be a square.

SCALES OF NOTATION.

Art. 53. To explain the different systems of notation.

Def. Notation is the method of representing numbers by

symbols; and it comprises different scales dependent upon the

number of the symbols or figures employed.

In the common system of notation, each figure of any number

increases in value in a tenfold ratio in proceeding from right lo

left. Thus .5432 is equal to 5000+400+30+2

=5x1000+4x100+3x10+2
=5xl0'+4xl0=+3xl0'-i-2

The figures 5,4,3,2 are called di^/te, and the number 10,

eccording to whose powers they proceed, is called the radix of the

Bcalc.

It is purely conventional that 10 should be the radix; tho

choice of it has probably arisen from the circumstance of our
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Qa\ing' ten fingers on the two hands. There may bo any number
of different scales, euch of which has its .own radix. When the

radix is 2, the scale is called Binary; when 3, Ternary; when
4, Quaternary; when .'3, Quinary; when 0, Senary; when 7,

Septenary ; when 8, Oclary ; when 9, IVonary ; wlien 10, Denary ;

when 11, Umlenary ; when .2, Duodenary ; and so on.

If 5432 represents a number in the Senary system, whose
scale is 6, it may be represented thus,

5x6'+4x6=+3x6+2; or, inverting the order,

2+3x6+4x62+.5x6^
And generally, if the digits of a number be a„, a,, mj, uj, &c.,

reckoning from riffhl to left, and the radix be r, the number
will be represented by

Or, if there be n digits, by reversing the order of the terms, the

number will be expressed by

a„_,)-"-'4-a„_s,?-"-2+o„_gr'"-3+. . . . -]-a,r+a„.

In any scale of Notation every digit is necessarily less than r,

and the number of the digits, including 0, is equal to r. Also, in

any number, the liighest power of r is less by 1 than the numha'

of digits.

Cor. Hence the digits including the cipher, in the

Binary scale are 1, 0.

Ternary " " 1,2,0.

Quaternary " 1,2,3,0.

Quinary " 1,2,3,4,0. And so on.

In the Duodenary scale it will bo necessary to add two charac-

ters to represent ten and eleven ; we, therefore, for ten put I for

eWen e. i

.-. Duodenary digits are 1,2, 3, 4, 5, 6, 7, 8, 9, t, e, 0.

Akt. 54. To express a given number in any proposed scale

Let N be the number, and r the radix of the scale

Then if a„, «.,, a^, &c., be the unknown digits

'N=a„-\ra,r+a2r^-\-a^r^-\-, &c.

If N be divided by r, the remainder is a„ ,

if the quotient be divided by r, the rem. is a,
;

if this quotient be divided by r, the rem. is a^,

and so on, till the last quotient is 0. The last remaindei will

evidentlv be the figure in the highest place.
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For, let N=a-fir+cr2-(-(/H+, &,c.,

=Kr—l)+c(r2—l)+<f(r^—1)+, &c.

-\-a-\-b+c-\-d-\-, ike.
;

Lnen since eacb of the factors r—1, r=—1, r^—l, &c., is divisible

by r— 1, (Algebra, Art. 83,) it follows that N and a+b+c-{-d+,
&c., when,divided by r— 1, will leave the same remainder.

Cor. In the common scale of notation since r=10, r—1=9,-
'herefore, every number when divided hy 9 will leave the same ren.ain-

der as the sum of its digits when divided by 9.

From this property is derived the rule for testing the accuracy
of the operation of Multiplication, by casting out the nines.

Let A and B contain a and h nines respectively, with the

remainders r and r', so that

A=9a4-r, B=9i')+r-
;

then AB=(9ffi+r)(9i+r'),

=81a6+9ir+9a!--|-)-r',

=9(9a?)4-/)?-+ar')+rr'

;

.•. AB and rr' , when divided by 9, leave the same remainder,

that is, the sum of the digits of the product, when divided by 9,

leaves the same remainder, as the sum of those of the product of

the partial remainders leaves when divided by 9.

Ex. If A=327, and B=248; then r=3, and r'=5;

also, AB=81096, and rr'=\5.

By casting the nines out of the sum of the digits in each of

these products, we find the remainder in both cases is the same,

that is 6.

NoTK.— This method fails to detect an error in either of the following

cases : (1), when one or more ciphers have been omitted in the procluc'
;

(2), when any of its digits are misplaced; and (.3), when the error ii

equal to 9, or any multiple of S).

EXAMPLES.

1 The number 49.54 expressed in a different scale of notation

beccmes 20305; what is the radix of the scale 1

20305=2 X r^+0 X '•'+3 X r^+O X r4-5=2r^+3 r^+S ;

... 2H+3r^+5=4954 ;

whence r'=in. and r=7.
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2. Find the radix of the scale in which 95 is expressed by 1 37

Ans. 8.

3. Find the radix of the scale in which 803 is expressed by

30203. Ans.'i.

4. Find the radix of the scale in which the double of 145 ii

.expressed by the same digits in the same order. Ans. 15.

5.. Express the common No. 5381 in the ternary and nonary

scales. Ares. 21101022, and 7338.

6. Express the quinary No. 34402 in the quaternary scale.

Ans. 212231.

7. Express the common Nos. 6587 and 3907 in the duodenary

Bcale ; and then find their product.

Ans. 398e and 2317; product 8751215.

8. Multiply 24305 by 34120 in the senary scale.

Ans. 1411103040.

9. Divide 95088918 by n 4 in the duodenary scale.

Ans. tAtee.

10. Extract the square root of 25400544 in the senary scale.

Ans. 4112.

11. Out of the series of weights of 1 lb., 2 lbs., 4 lbs., 8 lbs.,

&,c., how many must be selected to weigh 153 lbs 1

Solution. 153 must be expressed in the binary scale, and it

is 10C11001=2'4-2<+23+l =128+16+8+1; that is, we
must take the weights 1 lb., 8 lbs., 16 lbs., and 128 lbs.

12. What weights of the series 1 lb., 3 lbs., 9 lbs., 27 lbs.,&c.

must be selected, to weigh 1319 lbs. ]

Solution. 1319 in the ternary scale is 1210212=3^+2x3
+3^+2x3^+3+2;

but 2=3—1; .-. 2x3^=35(3—1)=3=—3'

;

3«+36=2x38=3«(3—1)=3'—3«;

2x3^=32(3—1)=3'—3=,
2=3—1, and 3+2=3+3-1=2x3—1, =3(3—1)—1=3'—

3

—1 ; hence the expression becomes

37—38—3s+3''+3'—3—1 =3'+3^+3'—(3«+3'+3+])
=2187+81+27—(729+243+3+l)=1319.
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Hence, the three weights 2187, 81, and 27 must be placed in

one scale, and the four weights 729, 241), 3, and 1 in the other.

13. Which of the weights 1 lb., 2 lbs., 4 lbs,, 8 lbs., must be
selected to weigli 1719 lbs !

Ans. 1 lb., 2 lbs., 4 lbs., 16 lbs., 32 lbs., 128 lbs., .'512 lbs.,

1024 lbs.

14. Which of the weights 1 lb., 3 lbs., 9 lbs., &c., must be

selected to weigh 304 lbs !

Ans. Place 1 lb., 9 lbs., 81 lbs., and 243 lbs., in one scale, and

3 lbs., and 27 lbs., in the other.

ALGEBRAIC PARADOX.

It is shown, (Algebra, Art. 137,) that g is the symbol of inde-

termination, and that it may represent ant/ r/uantiti/ whatever. A
failure to observe this principle often leads to absurd conclusions ;

thus, if we take a=:x
;

multiplying by x ax=x^ ;

subtracting a' ax—a^=x'—a^
;

factoring d{x—a)={x-\-a){x—a) ;

dividing by x—a a=x-\-a
;

or a='2a

;

or 1=2.

Or thus, 6+21=6+21;
transposing, 6—6=21—21

;

factoring, 2(3—3)=7(3—3) ;

dividing by 3—3 2=7.

In these, and other similar examples that might be given, the

fallacy is caused by the indirect introduction of the-indeterminate

value §. Thus in the first example above, a{x—a')=:^{x-\ a){x—a).

is the samo as _?_=^I^=g when x=a. Also, 2(3—3)
x-{-a X—a

=7(3—3) is the same as 7=8-

Hence it is evident, that no reliance can be placed on conclu-

gions derived from any process of reasoning where % has been

introduced.

THE END.



CONTENTS.

Kb i TO Part First ... . . . - • • * S to 73

KEY TO PAttT 8E0OND.
Greatest Common Divisor 73

Least Common Multiplo 76

Algebraic Fractious •• 7T

Equations of the First Degree- - • S4

GencralizatioD — 100. Negative Solutioa^- 103

Involution 105

Extracti(.nofKoot3 106

RadicalB • - - 108

Inequalities .- ...- 120

Equations of the Second Degree « 123

Ratio— 170. Variation - 179

Arithmetical Progressioa— 181. Geometrical Progressioii » 187

Problems in Progressions 191

Permutations and Combinations ,..«. 196

Binomial Theorem— integral exponent -••-•- 202

Indeterminate Cofiffleients .•....-,... 204

Binomial Theorem— fractional exponent 209

Differential Method of Series - 216

Piling of Balls— 219. Interpolation of Series 22i

Beries— Infinit*>— Recurriny— Reversion of --'••• •*---- 22t—225

Uontiuued Fractions- .... ..».«.'., ,._... 229

Logarithms -• 232

Exponential Equations • - . . - 237

Interest and Annuities 242

General Theory of Equations 2J/

Transformation of Equations .••" -i

Equal Roots 23

Sturm's Theorem * 257

Kesolufcion of Numerical Equations— Rational Roots * 261

Horner's Method of Approximation 273

Additional Examples in Higher Equations - 283

Approximation by Double Position ^.., 280

Newton's Method of Approximation 292

Cardan's Solution of Cubic Equations - ^.. 293

Reciprocal Equations— 295. Binomial Equations • -«• 298

APTENDIX.
Indeterminate Analysis • SOO

Diophantino Analysis 317

Properties of Numbers 332

^JcaJes of Notation •-• -.. 338

Algobraio Paradox* -.-- ,....., 34j,



ECLECTIC EDUCATIONAL SERIES.

RAY'S MATHEMATICS.
EMBRACING

A Thorough, Progressive, and Complete Course in Arithmetic, Algebra,

and the Higher Mathematics.

«>K«0"

Ray's Primary Arithmetic. Ray's Higher Arithmetic.

Ray's Intellectual Arithmetic. Key to Ray's Higher.
Ray's Practical Arithmetic. Ray's New Elementary Algebra.
Key to Ray's Practical. Ray's New Higher Algebra.
Ray's Test Examples in Arith. Key to Ray's New Algebras.

Bay's Plane and Solid Geometry.

By Eli T. Tappan, A. M., P/es't Ketiyon College. i2mo., cloth,
276 pp.

Ray's Geometry and Trigonometry.

By Eli T. Tappax, A. M. , Pres't Kenyon College. 8vo., sheep, 420 pp.

Hay's Analytic Geometry.

By Gko. H. Howison, a. M., Prof, in Mass. Institute of Technology.
Treatise on Analytic Geomelry, especially as applied lo the piop-
eilies of Conies: including the Modern Methods of Abridged
Notation. 8vo., sheep, 574 pp.

Pay's Elements of Astronomy.

By S. H. Peabody, A, M., Prof. ,

Mass. Agric. College. liandsoi

Svo., sheep, 336 pp.

Bay's Suryeying and Navigation.

With a Pieliminary Treatise on Trigonometry and Mensuration.
By A. Schuyler, Prof, of Applied Mathematics and Logic in Bald-
luin University. 8vo., sheep, 403 pp.

Bay's Differential and Integral Calculus.

Elements of .the Infinitesimal Calculus, with numerous examples
and applications to Analysis and Geometry. By Jas. G. Clark, A.
M., Prof, in William Jewell College. 8vo., sheep, 440 pp.

DESCRIPTIVE CIRCULARS ON APPLICATION.

By S. H. Peabody, A, M., Prof, of Physics and Civil Engineering,
Mass. Agric. College. Handsomely and profusely Illustrated.

Svo., sheep, 336 pp.



ECLECTIC SERIES—SCIENCE.

The Elements of Physics.

By Sidney A. Norton, A. M., Prof, in Ohio Agricul-

tural and Mechanical College, and author of Elemenh
of Natui'al Fhilosophy. For Academies and Comrooiii

Schools. 121110, cloth. 286 pp. Illustrated.

Elements of Natural Philosophy.

By S. A. Norton, A. M., Professor of General and
Applied Chemistry in Ohio Agricultural and Mechanical
College. 360 illustrations. Problems and Copious Index.

Principles of Logic.

By A. Schuyler, M. A., Professor of Mathematics and
Logic in Baldwin University. i2mo, cloth. 168 pp.,
including Analysis of Contents.

Manual of English Rhetoric.

By A. Hepburn, Professor in Davidson College, N. C.
The Principles and Rules of English Rhetoric, for the

use of classes in High Schools and Colleges. i2mo,
cloth. 280 pp.

Manual of Physiology and Hygiene.

By R. T. Brown, M. D., late Chemist-in-Chief in the

Department of Agriculture, Washington, D. C. 50 Les-
sons, adapted to the use of Common and High Schools.

288 pp. Illustrated.

Manual of the Constitution of the U. S.

Designed for the Instruction of American Youth in the
Duties, Obligations, and Rights of Citizenship. By
Israel Ward Andrevi's, D. D., President of Marietta
College. 408 pp. Library edition, 8vo, full sheep.
School edition, i2mo, cloth.

Good Morals and Gentle Manners.

By Alex. M. Gow, A. M. A systimatic Text-Book on
Moral and Social Law. " Practical Ethics for the train-

ing of the true Gentleman and Lady." i2mo, cloth.



ECLECTIC SERIES—HISTORY.

Manual of Ancient History.

From the earliest times to the fall of the Western Em-
pire. By M. E. Thaliieimer, formerly Teacher of
History and Composition in Packer Collegiate Institute.

8vo, 378 pp. Handsomely illustrated with full-page

engravings of Ancient Temples and other histoiical ob-
jects, charts of the principal cities, and accm-ate and
finely executed double-page maps of the various coun-
tries considered in the text. Complete Index and Pro-
nouncing Vocabulary.

Mediseval and Modern History.

By the same author. 480 pp., full 8vo. 12 beautiful

and accurate double-page maps. Voluminous Index.

Tke above are companion voluines, uniform in size, bind-

ing, and price, the two together forming a valuable, concise,

and complete History of the World, from the^ earliest times

to the present. They are published in durable and attractive

style, and are adapted to the use of the general reader as well

as students in History.

The following from The Nation, in regard to these vol-'

umes, has been the almost unijorin verdict of the Atnerican

press and leading educato?'s :

" Thalheinier's Ancient History "will be found the mcisl service-

able work within the reach of our schools. It has, indeed, no rival

worth mentioning." . . . "We do not hesitate to pronounce the

Mediaaval and Modern History the best school text-book, covering

the same ground, with which \i c are acquainted."

MectiG Historical Atlas.

Full 8vo, cloth. 18 double-page maps, accurately drawn

and engraved. A hand-book for general readers and

students in Ancient and Modern History.

A School History of the United Stites.

By W. H. Venable. lamo, 270 pp. Finely illustrated,

and accompanied,with carefully drawn maps and charts.



Payne's School Supervision.

CHAPTERS ON SCHOOL SUPERVISION,

A Practical Treatise on Superintendence ; Grading; Arranging

Course of Study : Preparation and Use of Blanks, Records

and Reports ; Examinations for Promotions, etc.

By Wl. H. PAYNE, A.M., Sup't PuHic Schools, Adrian, Mich.

CONTENTS.
Chapter I : The Nature and Value of Superintendence.

Chapters II, III and IV: The Superintendent's Powers

defined and his general duties discussed. Chapters V

and VI: The Art of Grading. Chapter VII: Reports,

Records and Blanks. Chapter VIII: Examinations.

This is the first and only work ever published on the art of

school supervision.

It defines the mutual relations of the People, the Board, the

Superintendent, and the Teacher.

It reduces the art of grading to an exact system.

It contains the most approved forms of blanks, records and
reports, some of which embody features entirely new.

It presents a rational system of examinations, exact in method
and of great practical value.

It discusses the High School question from a point of view at

once conservative and progressive.

It presents a body of public school doctrine, invaluable to Boards
of Education, to Superintendents and Principals, to Teachers, and
to the general readej".

It is a complete text-book for students in Universities, Colleges,

and Normal Schools, who wish to make a preparation for the

higher branches of public school work.

VAN ANTWERP, BRAGG & CO.,
Publishers of ECLECTIC EDUCATIONAL SERIES,

CIXCIXNA TI AXD XEir VOJiK'.









ECLECTIC EDUCATIONAL SERIES.

HIGHER MATHEMATICS.
Bay's Plane and Solid Geometry,

Kay's Geometry and Trigonometry,

Bay's Analytic Geometry,

Bay's Elements of Astronomy,

Bay's Surveying and Navigation,

Kay's Differential & Integral Calcnlns,

Evans's Elementary School Geometry,

Schuyler's Trigonometry & Mensnrat'n,

Schuyler's Elements of Geometry.

EIS^GLISH LANGUAGE.
Harvey's Language Lessons,

Harvey's Elementary Grammar,

Harvey's English Grammar,

Pinneo's Primary Grammar,

Pinneo's Analytical Grammar,

COMPOSITION ^ EHETORIC.
Pinneo's English Teacher,

Pinneo's Guide to Composition,

Pinneo's Exercises in False Syntax,

Pinneo's Parsing Exercises,

Williams's Parser's Manual,

Hephurn's English Bhetorio.

ECLECTIC GEOGRAPHIES.
Eclectic Primary Geography, No. 1.

Eclectic Intermediate Geography, No. 2.

Eclectic School Geography, No. 3.

HISTORY.
Venahle's United States History,

Eclectic Historical Atlas,

Thalheimer's History of England,

Thalheimer's Ancient History,

Thalheimer's Mediaeval & Modern Hist'y,

ECLECTIC PENMANSHIP.
Eclectic Elementary Course, 3 No's,

Eclectic Oopy-Books, 9 No's,

Eclectic Exercise-Book,

Eclectic Writing-Cards,

Eclectic Hand-Book of Penmanship,

Eclectic Copy-Bock Covers,

fS3S- Descriptive Circulars and Price-list on application to the Publishers.'

'^^^"""-^''nyiKOrfflTOTTTO. {SCINCINNATI. J

VAN ANTWERP, BRAGG & CO.

28 Bond St.

EW YORK.



ECLECTIC EDUCATIONAL SERIES.

SCHOOL MUSIC.
Philip Phillips's Day-School Singer,

Toung Singer, Part I.

ITonng Singer, Part 11.

lYonng Singer's Manual.

ELOCUTION # DIALOGUES.
McGuffey's Juvenile Speaker,

Mcfiuffey's Eclectic Speaker,

Eidd's Elocution and Vocal Cnlture,

Yenable's School Stage,

Tenable' 8 Amateur Actor,

Tenable's Dramas & Dramatio Scenes.

SPECIAL readi:n^g.
Cole's Institute Eeader, I Mcfiuffey's Khetorical Eeader,

Kidd's Rhetorical Eeader, Mcfiuffey's High School Eeader.

Hemans Toung Ladies' Eeader, I

scie:n'ce.
Norton's Elements of Physics,

Norton's Natural Philosophy,

Schuyler's Principles of Logic,

Brown's Physiology and Hygiene,

Andrews's Manual of the Constitution,

Gow's Qood Morals & Oentle Manners.

LAIS^GUAGES
Fdeetic Classical Series :

Bartholomew's Latin firammar,

Bartholomew's Latin firadual,

Bartholomew's Caesar.

Buffet's French Method, Part L

Duffet's French Method, Part II.

Key to Duffet's French Method,

Duffet's French Literature.

TEACHERS' LIBRARY.
Payne's School Supervision,

Smart's Manual of Free Gymnastics,

Object Lessons, by Lilienthal & Allyn,

Erusi's Life of Pestalozzi,

Hailman's Kindergarten Culture,

Hailman's History of Pedagogy,

The Examiner, or Teacher's Aid,

SCHOOL RECORDS, &c.
White's Pupils' Daily Eecord,

Payne's Eclectic School Blanks,

Eclectic School Pens.

White's Common School Eegister,

White's Graded School Eegister,

White's Teachers' Class Eecord,

JS^Deseriptive Circulars and Price-List on application to the Publishers'

I3T Walnut St. 11

CINCINNATI, i WTROTTMITrrTo. {

VAN ANTWERP, BRAGG & CO.

28 Bond St.

NEW YORK.




